
Extending the GCC compiler with MELT

Basile Starynkevitch
basile@starynkevitch.net or basile.starynkevitch@cea.fr

may, 22nd, 2013, EPITA LRDE seminar

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 1 / 56

mailto:basile@starynkevitch.net
mailto:basile.starynkevitch@cea.fr


Caveat
All opinions are mines only (not of CEA or of GCC etc...)

I (Basile) don’t speak for my employer, CEA (or my institute LIST)
I don’t speak for GCC community
I don’t speak for anyone else (e.g. funding agencies)
some of my opinions here are highly controversial
(my opinions may change)

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ♠ 2 / 56



Introduction: Languages, Compilers, Bootstrap

Contents

1 Introduction: Languages, Compilers, Bootstrap

2 MELT
why MELT?
handling GCC internal data with MELT
matching GCC data with MELT

3 Future of MELT and compilation dreams

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 3 / 56



Introduction: Languages, Compilers, Bootstrap

Programming languages

programming languages are used by human programmers
they are the preferred form to communicate between human
programmers, and also between programmers and computers.
programming languages are not understood by computers
balance between

more expressive, more powerful, languages
established code legacy

free software is about source code:
freedom to use the program and run it for any puprose
freedom to study the program (its source code), and change it
freedom to redistribute copies (in source form usually)
freedom to improve the program (its source)

source code is the preferred form to work on programs (for human
developers)

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 4 / 56



Introduction: Languages, Compilers, Bootstrap

the declarative ideal

declarative knowledge

“Declarative knowledge is given without directions for use. [...] It is
much easier to define, understand, and modify declarative
knowledge”

J.Pitrat [a french pionner in artificial intelligence]

Artificial Beings (the conscious of a conscious machine) [Wiley 2009]

Because of the growing gap between (much more) complex hardware
systems and (even low-level) programming languages, programs need to be
somehow “declaratively” understood by the system.

Programmers need more and more declarative languages to improve their
productivity.

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 5 / 56



Introduction: Languages, Compilers, Bootstrap

C is becoming “silently” more “declarative”

While C is a low-level [system] programming language, it evolves to be less
“procedural” (= giving code with usage instructions):

register is obsolete and useless. The compiler will use machine
registers better than a human programmer can.
functions may be inlined (even without inline!) or [partially] cloned.
some #pragma-s (notably for OpenMP) are useful hints to the compiler.

Notice that C recent code is quite different in style from 199x-s era. The
programmer expects the C compiler to be smarter, and the C code is
increasingly farther from the hardware1.

So C (and C++, etc...) is becoming more expressive.

1Because current processors [e.g. Intel i7] are much more complex than 1990-s era ones [eg
i486], even if they understand nearly the same instruction set.

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 6 / 56



Introduction: Languages, Compilers, Bootstrap

languages vs libraries

Languages, notably domain specific languages, are:

usually easy to learn
often difficult to implement
making sense when more expressive (or “declarative”)

Libraries are:

generally tied to a language (e.g. C as an “esperanto”)
usually very complex (so are also hard to implement and to use)

providing ad hoc abstractions (e.g. C++ “iterators”)
difficult to learn

Unfortunately, people (i.e. decision makers) prefer new libraries to new languages
(even if learning a library is much more difficult than learning a new programming language).

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 7 / 56



Introduction: Languages, Compilers, Bootstrap

About compilers

Roles of an “industrial strength” compiler :

accept legacy source code base;
huge source code bases exist (Firefox, Linux kernel, ... dozens of MLOC each)

provide feedback to programmer: good diagnostics (warnings, errors) are
increasingly important.
ability to generate (when optimizing) good machine code, even for source
programs increasingly far from machine constraints (out-of-order execution on
parallel processing units [→ instruction scheduling], caching [→ prefetching], ...)

A good optimizing compiler needs to transform non-trivially its internal
representations of the compiled program.

See A.Cohen et G.Fursin’s MILEPOST experiment: dozens of thousands of
machine instructions generated from a trivial C code (matrix multiplication in a few
lines of C), twice as efficient as gcc -O2.

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 8 / 56



Introduction: Languages, Compilers, Bootstrap

Internal complexity of GCC

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 9 / 56



Introduction: Languages, Compilers, Bootstrap

About GCC
The GCC compiler:

coded in C and C++ (officially in C++ since 4.7, but most code is C like)

current release 4.8 (march 2013) see gcc.gnu.org 108Mbyte .tgz

community of ≈ 400 developers (mostly full time, paid by major corporations:
Google, Intel, Suse, Redhat, ....)

see also www.cse.iitb.ac.in/grc/ and gcc-melt.org

nearly 10MLOC: D.Wheeler SLOCcount 4,781,343;
wc: 13978379 52386984 488154761 total

25+ years old software
peer reviewed software code
use its own several specialized C code generators
quite messy code: hundreds of global variables, ....
some community members may be harsh
several thousands of monthly messages: gcc@gcc.gnu.org
(development) gcc-patches@gcc.gnu.org (patches and review)

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 10 / 56

gcc.gnu.org
www.cse.iitb.ac.in/grc/
gcc-melt.org


Introduction: Languages, Compilers, Bootstrap

Timing gcc -O2 -ftime-report -c melt-runtime.c

Only lines with ≥ 2% wall time (most of the work is “optimizing”, not “parsing”)

phase parsing : 0.45 (10%) usr 0.23 (53%) sys 0.69 (14%) wall 75943 kB (36%) ggc
phase opt and generate : 3.89 (89%) usr 0.20 (47%) sys 4.11 (85%) wall 135216 kB (63%) ggc
|name lookup : 0.07 ( 2%) usr 0.02 ( 5%) sys 0.11 ( 2%) wall 2132 kB ( 1%) ggc
cfg cleanup : 0.08 ( 2%) usr 0.00 ( 0%) sys 0.11 ( 2%) wall 1299 kB ( 1%) ggc
df live regs : 0.20 ( 5%) usr 0.00 ( 0%) sys 0.22 ( 5%) wall 0 kB ( 0%) ggc
df live&initialized regs: 0.05 ( 1%) usr 0.00 ( 0%) sys 0.11 ( 2%) wall 0 kB ( 0%) ggc
df reg dead/unused notes: 0.09 ( 2%) usr 0.00 ( 0%) sys 0.15 ( 3%) wall 1481 kB ( 1%) ggc
preprocessing : 0.08 ( 2%) usr 0.10 (23%) sys 0.20 ( 4%) wall 12572 kB ( 6%) ggc
parser (global) : 0.10 ( 2%) usr 0.05 (12%) sys 0.16 ( 3%) wall 46233 kB (22%) ggc
parser function body : 0.17 ( 4%) usr 0.06 (14%) sys 0.23 ( 5%) wall 9063 kB ( 4%) ggc
tree CFG cleanup : 0.04 ( 1%) usr 0.00 ( 0%) sys 0.12 ( 2%) wall 252 kB ( 0%) ggc
tree VRP : 0.14 ( 3%) usr 0.00 ( 0%) sys 0.10 ( 2%) wall 4899 kB ( 2%) ggc
tree PRE : 0.13 ( 3%) usr 0.00 ( 0%) sys 0.09 ( 2%) wall 4101 kB ( 2%) ggc
tree FRE : 0.08 ( 2%) usr 0.02 ( 5%) sys 0.10 ( 2%) wall 4150 kB ( 2%) ggc
CSE : 0.14 ( 3%) usr 0.01 ( 2%) sys 0.12 ( 2%) wall 560 kB ( 0%) ggc
CPROP : 0.09 ( 2%) usr 0.00 ( 0%) sys 0.17 ( 4%) wall 3874 kB ( 2%) ggc
combiner : 0.15 ( 3%) usr 0.00 ( 0%) sys 0.23 ( 5%) wall 3575 kB ( 2%) ggc
integrated RA : 0.25 ( 6%) usr 0.02 ( 5%) sys 0.26 ( 5%) wall 10322 kB ( 5%) ggc
reload CSE regs : 0.16 ( 4%) usr 0.00 ( 0%) sys 0.13 ( 3%) wall 2788 kB ( 1%) ggc
scheduling 2 : 0.21 ( 5%) usr 0.00 ( 0%) sys 0.13 ( 3%) wall 466 kB ( 0%) ggc
rest of compilation : 0.05 ( 1%) usr 0.01 ( 2%) sys 0.11 ( 2%) wall 1426 kB ( 1%) ggc

... etc . . . (85 other lines) ....
TOTAL : 4.35 0.43 4.81 213018 kB

(preprocessed 103751 lines, 448560 word tokens; source: 15KLOC + 10 KLOC of MELT headers)

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 11 / 56



Introduction: Languages, Compilers, Bootstrap

Features of GCC

free software mostly GPLv3+ licensed and FSF copyrighted
http://www.gnu.org/licenses/gcc-exception-3.1.en.html permit
compilation of proprietary programs

several accepted source languages :
C, C++, Objective C, Ada, Fortran, Go, (Java, D, ...)
many host and target operating systems (Linux, Hurd, AIX, Solaris,
MacOSX, Windows, ...)
many target processors and systems, ABIs (x86, Sparc, ARM, PowerPC,
... both 32 and 64 bits, and many others)
can be a cross-compiler (even Canadian Cross compiler)
accepts (free software) plugins
many program options (e.g. -O2 -flto -g etc etc...)
competitive and complex optimizations
> 200 optimization passes (tree organized pass manager)
most passes are in the middle-end (source and target “independent”)

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 12 / 56

http://www.gnu.org/licenses/gcc-exception-3.1.en.html


Introduction: Languages, Compilers, Bootstrap

Bootstrapping

Using a compiler to compile itself.

Usual practice:

Ocaml compiler is coded in Ocaml. The primordial compiler is distributed
as bytecode with the source.
Rust (Mozilla language) is coded in Rust. The installation procedure
fetches old binaries on the Web.
GCC: the compiler (including a lot of generated C code) is compiling itself
several times stage1, stage2, stage3. Its Ada front-end is in Ada.
MELT: the MELT to C translator is bootstrapped. The source code
repository also contains its translated form in
melt/generated/*.[ch] (2MLOC). But some code (e.g.
melt-runtime.c) is still mostly hand written.
J.Pitrat’s CAIA declarative system is entirely bootstrapped: generates all
of its 500KLOC of low-level C (but still requires an optimizing C compiler)

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 13 / 56



Introduction: Languages, Compilers, Bootstrap

Why bootstrap a compiler?

even a trivial compiler (tinycc 30KLOC) is complex. Even a simple
translator (MELT 63KLOC of MELT code) is complex. A real compiler
(GCC, LLVM) is huge: bootstrapping is a good test
social issue: self confidence of the compiler coder
for evolving high-level languages, progessively improve the expressivity
of the language; replace old parts of the system with better new parts :
trivial example (if test (begin exprs . . .))

→ (when test exprs . . . )
bootstrapping as a ladder for more declarativity
See J.Pitrat’s work for more.
ideally requires an IDE-like2 tool (within the translator) to help refactoring

NB: some compilers are not bootstrapped (Fortran front-end)

2Integrated Development Environment; clever editor; emacs mode; ....

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 14 / 56



Introduction: Languages, Compilers, Bootstrap

MELT

MELT gcc-melt.org is a [meta-]plugin for GCC providing a
high-level domain specific language to extend GCC.

plugging Ocaml into GCC is not humanly feasible (I tried)
GCC has more than 2000 types and ≈ 10MLOC 3

MELT is a free (GPLv3 licensed, FSF copyrighted) plugin for GCC 4.6 or 4.7 or
4.8
MELT is a DSL fitting into GCC internals
MELT provide some features of Ocaml (or Scheme)

1 garbage collection of values
2 pattern matching
3 high-order programming (closures)
4 (but not static typing or type inference) unlike Ocaml, MELT is a mostly

dynamicly typed language (à la Scheme)

3See David Malcom’s gcc-python-plugin
B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 15 / 56

http://gcc-melt.org/
https://fedorahosted.org/gcc-python-plugin/


Introduction: Languages, Compilers, Bootstrap

GCC internal representations

GCC has many rich internal representations
(thousands of C data types, i.e. struct)

Tree-s4 for the AST of declarations, source [or SSA] variables, operands
Gimple-s5 for the simple instructions (e.g. 3 operands instructions à la
x ← y + z)
basicblock-s made of gimple-s (thru gimpleseq-s)
edge-s for the control flow graph, between basicblock-s
etc

The GTY(()) annotation is for garbage collection in Gcc source code

4200 different variants of tree-s, see file gcc/tree.def of Gcc
538 different variants of gimple-s, see file gcc/gimple.def, half for OpenMP
B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 16 / 56



Introduction: Languages, Compilers, Bootstrap

Looking into some of the GCC internals

dumping facilities, e.g. gcc -fdump-tree-all -O -c foo.c
gives hundreds of files like6 foo.c.073t.phiopt1 ...
with MELT’s probe facility:
gcc -fplugin=melt -fplugin-arg-melt-mode=probe -O -c
foo.c

-fplugin=melt loads the MELT plugin7

-fplugin-arg-melt-mode=probe gives the mode for the MELT plugin8

MELT has many other options -fplugin-arg-melt-debug shows a lot of
debugging output (to debug MELT or your MELT extensions).

6the number 073t is absolutely meaningless
7You could load several plugins, but you usually load one at most
8without any mode, MELT does nothing. Use the help mode to get help about existing modes.
B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 17 / 56



MELT

Contents

1 Introduction: Languages, Compilers, Bootstrap

2 MELT
why MELT?
handling GCC internal data with MELT
matching GCC data with MELT

3 Future of MELT and compilation dreams

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 18 / 56



MELT why MELT?

Motivations for MELT

Gcc extensions address a limited number of users9, so their development
should be facilitated (cost-effectiveness issues)

extensions should be [meta-] plugins, not Gcc variants [branches, forks] 10

which are never used
⇒ extensions delivered for and compatible with Gcc releases
when understanding Gcc internals, coding plugins in plain C is very hard
(because C is a system-programming low-level language, not a high-level
symbolic processing language)
⇒ a higher-level language is useful
garbage collection - even inside passes - eases development for
(complex and circular) compiler data structures
⇒ Ggc is not enough : a G-C working inside passes is needed
Extensions filter or search existing Gcc internal representations
⇒ powerful pattern matching (e.g. on Gimple, Tree-s, . . . ) is needed

9Any development useful to all Gcc users should better go inside Gcc core!
10Most Gnu/Linux distributions don’t even package Gcc branches or forks.

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 19 / 56



MELT why MELT?

Embedding a scripting language is impossible

Many scripting or high-level languages 11 can be embedded in some other software:
Lua, Ocaml, Python, Ruby, Perl, many Scheme-s, etc . . .

But in practice this is not doable for Gcc (we tried one month for Ocaml) :
mixing two garbage collectors (the one in the language & Ggc) is error-prone
Gcc has many existing GTY-ed types
the Gcc API is huge, and still evolving
(glue code for some scripting implementation would be obsolete before finished)

since some of the API is low level (accessing fields in struct-s), glue code
would have big overhead⇒ performance issues
Gcc has an ill-defined, non “functional” [e.g. with only true functions] or
“object-oriented” API; e.g. iterating is not always thru functions and callbacks:
/* iterating on every gimple stmt inside a basic block bb */
for (gimple_stmt_iterator gsi = gsi_start_bb (bb);

!gsi_end_p (gsi); gsi_next (&gsi)) {
gimple stmt = gsi_stmt (gsi); /* handle stmt ...*/ }

11Pedantically, languages’ implementations can be embedded!
B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 20 / 56



MELT why MELT?

Melt, a Domain Specific Language translated to C

Melt is a DSL translated to C in the style required by Gcc

C code generators are usual inside Gcc

the Melt-generated C code is designed to fit well into Gcc (and Ggc)

mixing small chunks of C code with Melt is easy

Melt contains linguistic devices to help Gcc-friendly C code generation

generating C code eases integration into the evolving Gcc API

The Melt language itself is tuned to fit into Gcc
In particular, it handles both its own Melt values and existing Gcc stuff

The Melt translator is bootstrapped, and Melt extensions are loaded by the
melt.so plugin

With Melt, Gcc may generate C code while running, compiles it12 into a Melt
binary .so module and dlopen-s that module.

12By invoking make from melt.so loaded by cc1; often that make will run another gcc -fPIC

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 21 / 56



MELT why MELT?

Melt values vs Gcc stuff

Melt handles first-citizen Melt values:
values like many scripting languages have (Scheme, Python, Ruby, Perl,
even Ocaml . . . )
Melt values are dynamically typed13, organized in a lattice; each Melt
value has its discriminant (e.g. its class if it is an object)
you should prefer dealing with Melt values in your Melt code
values have their own garbage-collector (above Ggc), invoked implicitly

But Melt can also handle ordinary Gcc stuff:
stuff is usually any GTY-ed Gcc raw data, e.g. tree, gimple, edge,
basic_block or even long

stuff is explicitly typed in Melt code thru c-type annotations like :tree,
:gimple etc.
adding new ctypes is possible (some of the Melt runtime is generated)

13Because designing a type-system friendly with Gcc internals mean making a type theory of
Gcc internals!

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 22 / 56



MELT why MELT?

Things = (Melt Values) ∪ (Gcc Stuff)

things Melt values Gcc stuff
memory
manager

Melt GC (implicit, as needed,
even inside passes)

Ggc (explicit, between passes)

allocation quick, in the birth zone ggc_alloc, by various
zones

GC tech-
nique

copying generational (old→
ggc)

mark and sweep

GC time O(λ) λ = size of young live ob-
jects

O(σ) σ = total memory size

typing dynamic, with discriminant static, GTY annotation
GC roots local and global variables only global data
GC suited
for

many short-lived temporary
values

quasi-permanent data

GC usage in generated C code in hand-written code
examples lists, closures, hash-maps,

boxed tree-s, objects . . .
raw tree stuff, raw gimple
. . .

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 23 / 56



MELT why MELT?

Melt garbage collection

co-designed with the Melt language
co-implemented with the Melt translator
manage only Melt values
all Gcc raw stuff is still handled by Ggc

copying generational Melt garbage collector (for Melt values only):
1 values quickly allocated in birth region

(just by incrementing a pointer; a Melt GC is triggered when the birth region is full.)
2 handle well very temporary values and local variables
3 minor Melt GC: scan local values (in Melt call frames), copy and move them

out of birth region into Ggc heap
4 full Melt GC = minor GC + ggc_collect (); 14

5 all local pointers (local variables) are in Melt frames
6 needs a write barrier (to handle old→ young pointers)
7 requires tedious C coding: call frames, barriers, normalizing nested

expressions (z = f(g(x),y)→ temporary τ = g(x); z=f(τ, y); )
8 well suited for generated C code

14So Melt code can trigger Ggc collection even inside Gcc passes!

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 24 / 56



MELT why MELT?

a first silly example of Melt code
Nothing meaningful, to give a first taste of Melt language:

;; -*- lisp -*- MELT code in firstfun.melt
(defun foo (x :tree t)

(tuple x
(make_tree discr_tree t)))

comments start with ; up to EOL; case is not meaningful: defun ≡ deFUn

Lisp-like syntax: ( operator operands . . . ) so
parenthesis are always significant in Melt (f) 6≡ f, but in C f() 6≡ f ≡ (f)

defun is a “macro” for def ining functions in Melt

Melt is an expression based language: everything is an expression giving a result

foo is here the name of the defined function

(x :tree t) is a formal arguments list (of two formals x and t); the “ctype
keyword” :tree qualifies next formals (here t) as raw Gcc tree-s stuff

tuple is a “macro” to construct a tuple value - here made of 2 component values

make_tree is a “primitive” operation, to box the raw tree stuff t into a value

discr_tree is a “predefined value”, a discriminant object for boxed tree values

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 25 / 56



MELT why MELT?

“hello world” in Melt, a mix of Melt and C code

;; file helloworld.melt
(code_chunk helloworldchunk

#{ /* our $HELLOWORLDCHUNK */ int i=0;
$HELLOWORLDCHUNK#_label:
printf("hello world from MELT %d\n", i);
if (i++ < 3) goto $HELLOWORLDCHUNK#_label; }# )

code_chunk is to Melt what asm is to C : for inclusion of chunks in the
generated code (C for Melt, assembly for C or gcc);
rarely useful, but we can’t live without!
helloworldchunk is the state symbol; it gets uniquely expanded 15

in the generated code (as a C identifier unique to the C file)

#{ and }# delimit macro-strings, lexed by Melt as a list of symbols (when
prefixed by $) and strings: #{A"$B#C"\n"}# ≡
("A\"" b "C\"\\n") [a 3-elements list, the 2nd is symbol b, others are
strings]

15Like Gcc predefined macro __COUNTER__ or Lisp’s gensym
B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 26 / 56



MELT why MELT?

running our helloworld.melt program

Notice that it has no defun so don’t define any Melt function.
It has one single expression, useful for its side-effects!

With the Melt plugin:

gcc-4.7 -fplugin=melt -fplugin-arg-melt-mode=runfile \
-fplugin-arg-melt-arg=helloworld.melt -c example1.c

Run as

cc1: note: MELT generated new file
/tmp/GCCMeltTmpdir-1c5b3a95/helloworld.c

cc1: note: MELT has built module
/tmp/GCCMeltTmpdir-1c5b3a95/helloworld.so in 0.416 sec.

hello world from MELT
hello world from MELT
hello world from MELT
hello world from MELT
cc1: note: MELT removed 3 temporary files

from /tmp/GCCMeltTmpdir-1c5b3a95

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 27 / 56



MELT why MELT?

How Melt is running

Melt don’t do anything more than Gcc without a mode
so without any mode, gcc -fplugin=melt ≡ gcc
use -fplugin-arg-melt-mode=help to get the list of modes
your Melt extension usually registers additional mode[s]

Melt is not a Gcc front-end
so you need to pass a C (or C++, . . . ) input file to gcc-melt or gcc
often with -c empty.c or -x c /dev/null
when asking Melt to translate your Melt file
some Melt modes run a make to compile thru gcc -fPIC the
generated C code; most of the time is spent in that make compiling
the generated C code

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 28 / 56



MELT why MELT?

Melt modes for translating *.melt files
(usually run on empty.c)

The name of the *.melt file is passed with
-fplugin-arg-melt-arg=filename.melt
The mode µ passed with -fplugin-arg-melt-mode=µ

translatedebug to translate into a .so Melt module built with gcc
-fPIC -g

translatequickly to translate into a .so Melt module built with gcc
-fPIC -O0

translatefile to translate into a .c generated C file
translatetomodule to translate into a .so Melt module
(keeping the .c file).

Sometimes, several C files filename.c, filename+01.c,
filename+02.c, . . . are generated from your filename.melt

A single Melt module filename.so is generated, to be dlopen-ed by Melt
you can pass -fplugin-arg-melt-extra=µ1:µ2 to also load your µ1 & µ2
modules

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 29 / 56



MELT why MELT?

Melt modes for running *.melt files

The -fplugin-arg-melt-workdir=directory is very useful: the work
directory help “caching” C and .so generated file.

the runfile mode to translate into a C file, make the filename.so
Melt module, load it, then discard everything.
the repl mode to run an interactive read eval print loop (reading several
expressions at once, ended by two newlines).
the eval mode to evaluate expressions from argument
the evalfile mode to evaluate expressions from a file

Evaluation prints the last evaluated expressions

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 30 / 56



MELT why MELT?

main Melt traits [inspired by Lisp]

let : define sequential local bindings (like let* in Scheme) and
evaluate sub-expressions with them
letrec : define co-recursive local constructive bindings
if : simple conditional expression (like ?: in C); when, unless sugar
cond : complex conditional expression (with several conditions)
instance : build dynamically a new Melt object
definstance : define a static instance of some class
defun : define a named function
lambda : build dynamically an anonymous function closure
match : for pattern-matching16

setq : assignment
forever : infinite loop, exited with exit

return : return from a function
may return several things at once (primary result should be a value)

multicall : call with several results
16a huge generalization of switch in C

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 31 / 56



MELT why MELT?

non Lisp-y features of Melt

Many linguistic devices to decribe how to generate C code
code_chunk to include bits of C
defprimitive to define primitive operations
defciterator to define iterative constructs
defcmatcher to define matching constructs
new in 0.9.9 defhook to define hooks, i.e. routines (called by C code)
with a C calling convention coded in MELT.

Values vs stuff :
c-type like :tree, :long to annotate stuff (in formals, bindings, . . . )
and :value to annotate values
quote, with lexical convention ’α ≡ (quote α)

(quote 2) ≡ ’2 is a boxed constant integer (but 2 is a constant long thing)
(quote "ab") ≡ ’"ab" is a boxed constant string
(quote x) ≡ ’x is a constant symbol (instance of class_symbol)

quote in Melt is different than quote in Lisp or Scheme.
In Melt it makes constant boxed values, so ’2 6≡ 2

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 32 / 56



MELT why MELT?

expansion of the code_chunk in generated C

389 lines of generated C, including comments, #line, empty lines, with:

{
#ifndef MELTGCC_NOLINENUMBERING
#line 3
#endif

int i=0; /* our HELLOWORLDCHUNK__1 */
HELLOWORLDCHUNK__1_label: printf("hello world from MELT\n");
if (i++ < 3) goto HELLOWORLDCHUNK__1_label; ;}

;

Notice the unique expansion HELLOWORLDCHUNK__1 of the state symbol
helloworldchunk

Expansion of code with holes given thru macro-strings is central in Melt

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 33 / 56



MELT handling GCC internal data with MELT

Gcc internal representations

Gcc has several “inter-linked” representations:
Generic and Tree-s in the front-ends
(with language specific variants or extensions)

Gimple and others in the middle-end
Gimple operands are Tree-s
Control Flow Graph Edge-s, Basic Block-s, Gimple Seq-ences
use-def chains
Gimple/SSA is a Gimple variant

RTL and others in the back-end

A given representation is defined by many GTY-ed C types
(discriminated unions, “inheritance”, . . . )
tree, gimple, basic_block, gimple_seq, edge . . . are typedef-ed
pointers

Some representations have various roles
Tree both for declarations and for Gimple arguments
in gcc-4.3 or before Gimples were Trees

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 34 / 56



MELT handling GCC internal data with MELT

Caveats on Gcc internal representations

in principle, they are not stable (could change in 4.7 or next)
in practice, changing central representations (like gimple or tree) is
very difficult :

Gcc gurus (and users?) care about compilation time
Gcc people could “fight” for some bits
changing them is very costly: ⇒ need to patch every pass
you need to convince the whole Gcc community to enhance them
some Gcc heroes could change them

extensions or plugins cannot add extra data fields (into tree-s,
gimple-s17 or basic_block-s, ...)
⇒ use other data (e.g. associative hash tables) to link your data to them

17Gimple-s have uid-s but they are only for inside passes!

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 35 / 56



MELT handling GCC internal data with MELT

Handling GCC stuff with MELT

Gcc raw stuff is handled by Melt c-types like :gimple_seq or :edge

raw stuff can be passed as formal arguments or given as secondary
results
Melt functions

first argument18 should be a value
first result is a value

raw stuff have boxed values counterpart
raw stuff have hash-maps values (to associate a non-nil Melt value to a
tree, a gimple etc)
primitive operations can handle stuff or values
c-iterators can iterate inside stuff or values
(new in 0.9.8) :auto implicit annotation inside let

18i.e. the reciever, when sending a message in Melt
B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 36 / 56



MELT handling GCC internal data with MELT

Primitives in Melt

Primitive operations have arbitrary (but fixed) signature, and give one result
(which could be :void).

used e.g. in Melt where body is some :basic_block stuff
(code by Jérémie Salvucci from xtramelt-c-generator.melt)

(let ( (:gimple_seq instructions (gimple_seq_of_basic_block body)) )
;; do something with instructions

)

(gimple_seq_of_basic_block takes a :basic_block stuff & gives a :gimple_seq stuff)

Primitives are defined thru defprimitive by macro-strings, e.g. in
$GCCMELTSOURCE/gcc/melt/xtramelt-ana-base.melt

(defprimitive gimple_seq_of_basic_block (:basic_block bb) :gimple_seq
#{(($BB)?bb_seq(($BB)):NULL)}#)

(always test for 0 or null, since Melt data is cleared initially)
Likewise, arithmetic on raw :long stuff is defined (in warmelt-first.melt):
(defprimitive +i (:long a b) :long
:doc #{Integer binary addition of $a and $b.}#
#{(($A) + ($B))}#)

(no boxed arithmetic primitive yet in Melt)
B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 37 / 56



MELT handling GCC internal data with MELT

c-iterators in Melt

C-iterators describe how to iterate, by generation of for-like constructs, with
input arguments - for parameterizing the iteration
local formals - giving locals changing on each iteration

So if bb is some Melt :basic_block stuff, we can iterate on its contained
:gimple-s using

(eachgimple_in_basicblock
(bb) ;; input arguments
(:gimple g) ;; local formals
(debug "our g=" g) ;; do something with g

)

The definition of a c-iterator, in a defciterator, uses a state symbol (like
in code_chunk-s) and two “before” and “after” macro-strings, expanded in the
head and the tail of the generated C loop.

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 38 / 56



MELT handling GCC internal data with MELT

Example of defciterator

in xtramelt-ana-base.melt

(defciterator eachgimple_in_basicblock
(:basic_block bb) ;start formals
eachgimpbb ;state symbol
(:gimple g) ;local formals
;;; before expansion
#{ /* start $EACHGIMPBB */
gimple_stmt_iterator gsi_$EACHGIMPBB;
if ($BB)
for (gsi_$eachgimpbb = gsi_start_bb ($BB);

!gsi_end_p (gsi_$EACHGIMPBB);
gsi_next (&gsi_$EACHGIMPBB)) {

$G = gsi_stmt (gsi_$EACHGIMPBB);
}#
;;; after expansion
#{ } /* end $EACHGIMPBB */ }#

)

(most iterations in Gcc fit into c-iterators; because few are callbacks based)

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 39 / 56



MELT handling GCC internal data with MELT

values in Melt

Each value starts with an immutable [often predefined] discriminant
(for a Melt object value, the discriminant is its class).

discr

gimple

boxed gimple

3-tuple

discr

value 1

value 2

value 3

3 (length)

class

field 1

field 2

field 3

3 
(#fields)

30017 
(magic)

object

discr hd tl discr hd tl

pair pair

discr hd

pair

discr first lastlist

GCC MELT values

 hash 0x57de2f

Melt copying generational garbage collector manages [only] values
(it copies live Melt values into Ggc heap).

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 40 / 56



MELT handling GCC internal data with MELT

values taxonomy

classical almost Scheme-like (or Python-like) values:
1 the nil value () - it is the only false value (unlike Scheme)
2 boxed integers, e.g. ’2; or boxed strings, e.g. ’"ab"
3 symbols (objects of class_symbol), e.g. ’x
4 closures, i.e. functions [only values can be closed by lambda or defun]

(also [internal to closures] routines containing constants)
e.g. (lambda (f :tree t) (f y t)) has closed y

5 pairs (rarely used alone)

boxed stuff, e.g. boxed gimples or boxed basic blocks, etc . . .
lists of pairs (unlike Scheme, they know their first and last pairs)

tuples ≡ fixed array of immutable components
associative homogenous hash-maps, keyed by either

non-nil Gcc raw stuff like :tree-s, :gimple-s . . . (all keys of same type), or
Melt objects

with each such key associated to a non-nil Melt value
objects - (their discriminant is their class)

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 41 / 56



MELT handling GCC internal data with MELT

lattice of discriminants

Each value has its immutable discrimnant.
Every discriminant is an object of class_discriminant (or a subclass)

Classes are objects of class_class
Their fields are reified as instances of class_field

The nil value (represented by the NULL pointer in generated C code) has
discr_null_reciever as its discriminant.
each discriminant has a parent discriminant (the super-class for classes)

the top-most discriminant is discr_any_reciever
(usable for catch-all methods)

discriminants are used by garbage collectors (both Melt and Ggc!)
discriminants are used for Melt message sending:

each message send has a selector σ & a reciever ρ, i.e. (σ ρ ...)
selectors are objects of class_selector defined with defselector
recievers can be any Melt value (even nil)
discriminants have a :disc_methodict field - an object-map associating
selectors to methods (closures); and their :disc_super

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 42 / 56



MELT handling GCC internal data with MELT

C-type example: ctype_tree
Our c-types are described by Melt [predefined] objects, e.g.

;; the C type for gcc trees
(definstance ctype_tree class_ctype_gty
:doc #{The $CTYPE_TREE is the c-type

of raw GCC tree stuff. See also
$DISCR_TREE. Keyword is :tree.}#
:predef CTYPE_TREE
:named_name ’"CTYPE_TREE"
:ctype_keyword ’:tree
:ctype_cname ’"tree"
:ctype_parchar ’"MELTBPAR_TREE"
:ctype_parstring ’"MELTBPARSTR_TREE"
:ctype_argfield ’"meltbp_tree"
:ctype_resfield ’"meltbp_treeptr"
:ctype_marker ’"gt_ggc_mx_tree_node"

;; GTY ctype
:ctypg_boxedmagic ’"MELTOBMAG_TREE"
:ctypg_mapmagic ’"MELTOBMAG_MAPTREES"
:ctypg_boxedstruct ’"melttree_st"
:ctypg_boxedunimemb ’"u_tree"
:ctypg_entrystruct ’"entrytreemelt_st"

:ctypg_mapstruct ’"meltmaptrees_st"
:ctypg_boxdiscr discr_tree
:ctypg_mapdiscr discr_map_trees
:ctypg_mapunimemb ’"u_maptrees"
:ctypg_boxfun ’"meltgc_new_tree"
:ctypg_unboxfun ’"melt_tree_content"
:ctypg_updateboxfun ’"meltgc_tree_updatebox"
:ctypg_newmapfun ’"meltgc_new_maptrees"
:ctypg_mapgetfun ’"melt_get_maptrees"
:ctypg_mapputfun ’"melt_put_maptrees"
:ctypg_mapremovefun ’"melt_remove_maptrees"
:ctypg_mapcountfun ’"melt_count_maptrees"
:ctypg_mapsizefun ’"melt_size_maptrees"
:ctypg_mapnattfun ’"melt_nthattr_maptrees"
:ctypg_mapnvalfun ’"melt_nthval_maptrees"
)

(install_ctype_descr
ctype_tree "GCC tree pointer")

The strings are the names of generated run-time support routines (or types, enum-s, fields . . . )
in $GCCMELTSOURCE/gcc/melt/generated/meltrunsup*.[ch]

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 43 / 56



MELT handling GCC internal data with MELT

Melt objects and classes
Melt objects have a single class (class hierarchy rooted at class_root)
Example of class definition in warmelt-debug.melt:
;; class for debug information (used for debug_msg & dbgout* stuff)
(defclass class_debug_information
:super class_root
:fields (dbgi_out dbgi_occmap dbgi_maxdepth)
:doc #{The $CLASS_DEBUG_INFORMATION is for debug information output,

e.g. $DEBUG_MSG macro. The produced output or buffer is $DBGI_OUT,
the occurrence map is $DBGI_OCCMAP, used to avoid outputting twice the
same object. The boxed maximal depth is $DBGI_MAXDEPTH.}#
)

We use it in code like
(let ( (dbgi (instance class_debug_information

:dbgi_out out
:dbgi_occmap occmap
:dbgi_maxdepth boxedmaxdepth))

(:long framdepth (the_framedepth))
)

(add2out_strconst out "!!!!****####")
;; etc

)

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 44 / 56



MELT handling GCC internal data with MELT

Melt fields and objects

Melt field names are globally unique
⇒ (get_field :dbgi_out dbgi) is translated to safe code:

1 testing that indeed dbgi is instance of class_debug_information, then
2 extracting its dbgi_out field.

(⇒ never use unsafe_get_field, or your code could crash)

Likewise, put_fields is safe
(⇒ never use unsafe_put_fields)

convention: all proper field names of a class share a common prefix
no visibility restriction on fields
(except module-wise, on “private” classes not passed to export_class)

Classes are conventionally named class_*

Methods are dynamically installable on any discriminant, using
(install_method discriminant selector method)

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 45 / 56



MELT matching GCC data with MELT

About pattern matching
You already used it, e.g.

in regular expressions for substitution with sed

in XSLT or Prolog (or expert systems rules with variables, or formal symbolic computing)

in Ocaml, Haskell, Scala

A tiny calculator in Ocaml:

(*discriminated unions [sum type], with cartesian products*)
type expr_t = Num of int

| Add of expr_t * expr_t
| Mul of expr_t * expr_t ;;

(*recursively compute an expression thru pattern matching*)
let rec compute e = match e with

Num x → x
| Add (a,b) → a + b
(*disjunctive pattern with joker _ and constant sub-patterns::*)
| Mul (_,Num 0) | Mul (Num 0,_) → 0
| Mul (a,b) → a * b ;;

(*inferred type: compute : expr_t → int *)

Then compute (Add (Num 1, Mul (Num 2, Num 3)))⇒ 7

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 46 / 56



MELT matching GCC data with MELT

Using pattern matching in your Melt code

code by Pierre Vittet

(defun detect_cond_with_null (grdata :gimple g)
(match g ;; the matched thing

( ?(gimple_cond_notequal ?lhs
?(tree_integer_cst 0))

(make_tree discr_tree lhs))
( ?(gimple_cond_equal ?lhs

?(tree_integer_cst 0))
(make_tree discr_tree lhs))

( ?_
(make_tree discr_tree (null_tree))))))

lexical shortcut: ?π ≡ (question π), much like ’ε ≡ (quote ε)

patterns are major syntactic constructs (like expressions or bindings are;
parsed with pattern macros or “patmacros”), first in matching clauses
?_ is the joker pattern, and ?lhs is a pattern variable (local to its clause)

most patterns are nested, made with matchers, e.g.
gimple_cond_notequal or tree_integer_const

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 47 / 56



MELT matching GCC data with MELT

What match does?

syntax is (match ε κ1 . . . κn ) with ε an expression giving µ and κj are
matching clauses considered in sequence
the match expression returns a result (some thing, perhaps :void)
it is made of matching clauses ( πi εi,1 . . . εi,ni ηi ), each starting with a
pattern19 πi followed by sub-expressions εi,j ending with ηi

it matches (or filters) some thing µ
pattern variables are local to their clause, and initially cleared
when pattern πi matches µ the expressions εi,j of clause i are executed in
sequence, with the pattern variables inside πi locally bound. The last
sub-expression ηi of the match clause gives the result of the entire match
(and all ηi should have a common c-type, or else :void)
if no clause matches -this is bad taste, usually last clause has the ?_
joker pattern-, the result is cleared
a pattern πi can match the thing µ or fail

19expressions, e.g. constant litterals, are degenerate patterns!
B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 48 / 56



MELT matching GCC data with MELT

pattern matching rules

rules for matching of pattern π against thing µ:
the joker pattern ?_ always match
an expression (e.g. a constant) ε (giving µ′) matches µ iff (µ′ == µ) in C
parlance
a pattern variable like ?x matches if

x was unbound; then it is bound (locally to the clause) to µ
or else x was already bound to some µ′ and (µ′ == µ) [non-linear patterns]
otherwise (x was bound to a different thing), the pattern variable ?x match fails

a matcher pattern ?(m η1 . . . ηn π′
1 . . . π

′
p) with n ≥ 0 input argument

sub-expressions ηi and p ≥ 0 sub-patterns π′
j

the matcher m does a test using results ρi of ηi ;
if the test succeeds, data are extracted in the fill step and each should
match its π′

j
otherwise (the test fails, so) the match fails

an instance pattern ?(instance κ :φ1 π′
1 ... :φn π′

n)
matches iff µ is an object of class κ (or a sub-class) with each field φi
matching its sub-pattern π′

i

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 49 / 56



MELT matching GCC data with MELT

control patterns

We have controlling patterns
conjonctive pattern ?(and π1 . . . πn) matches µ iff π1 matches µ and
then π2 matches µ . . .
disjonctive pattern?(or π1 . . . πn) matches µ iff π1 matches µ or else
π2 matches µ . . .

Pattern variables are initially cleared, so (match 1 (?(or ?x ?y) y))
gives 0 (as a :long stuff)

(other control patterns would be nice, e.g. backtracking patterns)

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 50 / 56



MELT matching GCC data with MELT

matchers

Two kinds of matchers:
1 c-matchers giving the test and the fill code thru expanded macro-strings

(defcmatcher gimple_cond_equal
(:gimple gc) ;; matched thing µ
(:tree lhs :tree rhs) ;; subpatterns putput
gce ;; state symbol
;; test expansion:
#{($GC &&

gimple_code ($GC) == GIMPLE_COND &&
gimple_cond_code ($GC) == EQ_EXPR)

}#
;; fill expansion:
#{ $LHS = gimple_cond_lhs ($GC);

$RHS = gimple_cond_rhs ($GC);
}#)

2 fun-matchers give test and fill steps thru a Melt function returning
secondary results

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 51 / 56



Future of MELT and compilation dreams

Contents

1 Introduction: Languages, Compilers, Bootstrap

2 MELT
why MELT?
handling GCC internal data with MELT
matching GCC data with MELT

3 Future of MELT and compilation dreams

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 52 / 56



Future of MELT and compilation dreams

work to be done on MELT (language and implementation)

even more powerful matcher (perhaps backtracking)
C++ generation:

friendly call frames, enabling introspection
C++ friendly MELT values

LTO support (technically difficult)
persitency
Web interface and project persistency machinery
(value related)
code real multi-translation unit static analyzers
(coding rules validation, ...)
pass real sized applications, perhaps GCC itself
getting more users

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 53 / 56



Future of MELT and compilation dreams

compilation dreams - low level languages

Both GCC and LLVM suck. We ideally need new compilers (for low level
languages like C, C++, Rust, Go, ...)

incremental [re]compilation
modularity (see LLVM module proposal for C and C++)
multi-threaded compiler
silent JIT techniques for C or C++
heterogeneous architectures
mixing static analysis, compilation, development environment
(refactoring)
generating C code inside a compiler is a good idea

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 54 / 56



Future of MELT and compilation dreams

compilation dreams - new low level languages

Like Rust, Go, ....

Something in which the successor of Linux (or of Firefox, or of Apache) could
be coded in

Something in which GC could be coded

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 55 / 56



Future of MELT and compilation dreams

compilation dreams - high level declarative languages

Compilers are a typical example of why they are needed!

We need even more declarative languages to code even more complex
compilers

B.Starynkevitch extending GCC with MELT May 22, 2013 (LRDE) ? 56 / 56


	Introduction: Languages, Compilers, Bootstrap
	MELT
	why MELT?
	handling GCC internal data with MELT
	matching GCC data with MELT

	Future of MELT and compilation dreams

