
GCC plugins through the MELT example

Basile STARYNKEVITCH
gcc-melt.org

basile@starynkevitch.net or basile.starynkevitch@cea.fr

CEA, LIST (Software Reliability Lab.), France
[soon within Université Paris Saclay]

March, 28th, 2014,
Linux Foundation Collaboration Summit (Napa Valley, California, USA)

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 1 / 70

http://gcc-melt.org/
mailto:basile@starynkevitch.net
mailto:basile.starynkevitch@cea.fr

Plan

1 Introduction

2 Writing simple plugins [in C++]
overview and hints
Gimple internal representation[s]
Tree internal representation[s]
Optimization passes
Gcc hooks for plugins

3 Extending GCC with MELT
MELT overview
Example pass in MELT

4 Advices and Conclusions
advices
why free software need GCC customization?

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 2 / 70

Caveat
All opinions are mine only

I (Basile) don’t speak for my employer, CEA (or my institute LIST)
I don’t speak for the GCC community
I don’t speak for anyone else
My opinions may be highly controversial
My opinions may change

Many slides, but some may be skipped...

Slides available online at gcc-melt.org under
(Creative Commons Attribution Share Alike 4.0 Unported license)

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ♠ 3 / 70

http://gcc-melt.org

Introduction

1 Introduction

2 Writing simple plugins [in C++]
overview and hints
Gimple internal representation[s]
Tree internal representation[s]
Optimization passes
Gcc hooks for plugins

3 Extending GCC with MELT
MELT overview
Example pass in MELT

4 Advices and Conclusions
advices
why free software need GCC customization?

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 4 / 70

Introduction

What really is Gcc

Gnu Compiler Collection gcc.gnu.org (FSF copyrighted, GPLv3 licensed)

Gcc is mostly working on [various] internal representations of the user code
it is currently compiling, much like a baker is kneading dough or pastry.

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 5 / 70

http://gcc.gnu.org/
http://pixabay.com/fr/p%C3%A2te-p%C3%A9trir-les-mains-cuire-3468/

Introduction

gcc & g++ drivers, cc1 etc...

The gcc or g++ 1 are driver programs. They are starting
cc1 (for C) or cc1plus ... for the compiler proper (includes
preprocessing), emitting assembly code.
as for the assembler
lto1 for Link Time Optimization
the ld or gold linker 2

the collect2 specific linker (creating a table of C++ constructors to be called for
static data)

Run g++ -v instead of g++ to understand what is going on.

GCC plugins are dlopen-ed by cc1, cc1plus, lto1 . . . So GCC “is mostly”
cc1plus, or cc1, or g951, or gnat1, etc...

1And also gccgo for Go, gfortran for Fortran, gnat for Ada, gdc for D, etc...
2LTO may use linker plugins.

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 6 / 70

Introduction

terminology: Gimple, Trees, . . .

Gimple = elementary (generally “3 addresses”) virtual instruction,
like x := y + 3 or x := f(z,t,u[3]) or if (x > y) goto lab;

SSA = static single assignment (e.g. Gimple/SSA)
Basic Block = elementary sequence of Gimple-s with one starting point
Tree = abstract syntax tree (AST)3; operands of Gimple instructions are
Tree-s
Generic = those trees common to many source languages
RTL = register transfer language (in backend)
CFG = control flow graph
Edge between two basic blocks
Loop representation
pass = optimization pass (often transforming Gimple)
(Gcc has hundreds of passes)

3Before gimplification the entire compiled source code is represented in Tree-s.

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 7 / 70

http://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html
http://gcc.gnu.org/onlinedocs/gccint/SSA.html
http://gcc.gnu.org/onlinedocs/gccint/Loop-representation.html

Introduction

internal picture of cc1 & cc1plus

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 8 / 70

Introduction

Using a plugin in Gcc

Legalese: Gcc runtime library exception
http://www.gnu.org/licenses/gcc-exception

from FAQ:
Lay the groundwork for a plugin infrastructure in GCC. For a while now, the GCC
developers have considered adding a plugin framework to the compiler. This would
make it easier for others to contribute to the project, and accelerate the development
of new compilation techniques for GCC. However, there have also been concerns that
unscrupulous developers could write plugins that called out to proprietary
software to transform the compiled code—effectively creating proprietary extensions
to GCC and defeating the purpose of the GPL. The updated exception prevents such
abuse, enabling the GCC team to look forward to plugin developments.

GCC plugins are expected 4 to be GPL compatible free software.
You want to develop your plugin in the open, e.g. to get help from the GCC community.

4You are probably not allowed to compile then distribute proprietary programs with a GCC
augmented with proprietary plugins. But I (Basile) am not a lawyer; make your own opinion!

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 9 / 70

http://www.gnu.org/licenses/gcc-exception
http://www.gnu.org/licenses/gcc-exception-3.1-faq.html

Introduction

Using the MELT plugin in Gcc

MELT (see gcc-melt.org) is ...
a high-level domain specific language to extend or customize Gcc

implemented as a Gcc plugin (GPLv3 licensed, FSF copyrighted)

also useful as a grep or awk like utility on Gcc internals
an experimental Gcc branch
a bootstrapped (Lisp-like) language translated to Gcc-friendly C++ code

Example “grep-like” compilation command using MELT:

gcc -fplugin=melt -fplugin-arg-melt-mode=findgimple \
-fplugin-arg-melt-gimple-pattern=’?(gimple_call_1 ?_
?(tree_function_decl_of_name "xmalloc" ?_ ?_)
?(tree_integer_cst ?(some_integer_greater_than 30)))’ \
-Isomedir -DYOUR_CONST_PARAM=10 -O2 -c foo.c

will compile your foo.c and notice all calls to xmalloc with a size larger
than 30 (impossible to do outside the compiler, e.g. with grep because of sizeof and
constant expressions).

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 10 / 70

http://gcc-melt.org/

Introduction

Why and when use Gcc plugins?

Take advantage of the power of the Gcc compiler and its internals
representations (I.R.):

some understanding of Gcc internals is needed...
explore or inspect the internal representations of your program code
as seen by Gcc (like findgimple example with MELT before)

source code navigation
specific coding rules validation (result of open should be checked)
API or library-specific warnings (check calls to variadic functions in Gtk?)
more sophisticated static code analysis

can ignore most I.R.
modify or enhance the internal representations

API or library-specific optimizations: fprintf(stdout,...); → printf(...);
“aspect oriented” programming
precise GC for C (glue code for local pointers handling)?

it is usually harder, since all of I.R. should usually be handled
Plugins are useful for many specific things which should not go inside Gcc!

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 11 / 70

Introduction

When Gcc plugins are useless?

if you wished stability of Gcc internals:
the [Gcc] plugin interface simply exposes GCC internals, and as such is not
stable across releases. [...] The most effective way for people to write plugins for
GCC today is to use something like MELT (http://gcc-melt.org) or the
GCC Python plugin
(https://fedorahosted.org/gcc-python-plugin/). These provide a
somewhat more standard interface across releases.

Ian Taylor, on gcc@gcc.gnu.org list, January, 21st, 2014

So your plugin is dependent5 of the version of Gcc (e.g. gcc-4.8 vs gcc-4.9)

to add a new front-end (like Gdc) to Gcc

to add a new back-end (or target processor) to your Gcc

to add your magical preprocessor macros (à la __COUNTER__)
when your gcc does not enable plugins (try gcc -v to find out; look for
--enable-plugin; report a distribution bug if missing)

5In practice, the dependency on the version number of gcc is not that huge.

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 12 / 70

http://gcc-melt.org
https://fedorahosted.org/gcc-python-plugin/
http://gcc.gnu.org/ml/gcc/2014-01/msg00181.html
http://gdcproject.org/

Writing simple plugins [in C++]

1 Introduction

2 Writing simple plugins [in C++]
overview and hints
Gimple internal representation[s]
Tree internal representation[s]
Optimization passes
Gcc hooks for plugins

3 Extending GCC with MELT
MELT overview
Example pass in MELT

4 Advices and Conclusions
advices
why free software need GCC customization?

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 13 / 70

Writing simple plugins [in C++] overview and hints

a crashing plugin
Symbols plugin_init and plugin_is_GPL_compatible are required
(and dlsym-ed by cc1, or cc1plus etc ...) in plugins.

 // file crashplugin.cc in public domain
 #include <cstdio>
 #include <cstdlib>
 #include "gcc-plugin.h"
 #include "plugin-version.h"
 #include "diagnostic.h"
 int plugin_is_GPL_compatible=1;
 extern "C" int plugin_init (struct plugin_name_args* pluginfo,
 struct plugin_gcc_version* compvers) {

 fprintf(stderr, "plugin info full name %s\n", pluginfo->full_name);
 fprintf(stderr, "crashing GCC compiler version %s date %s\n",
 compvers->basever, compvers->datestamp);
 if (!pluginfo->version)
 pluginfo->version = "0.01-crashing";
 if (!pluginfo->help)
 pluginfo->help = "a plugin to crash your GCC";
 if (!plugin_default_version_check (compvers, &gcc_version))
 return 1;
 fatal_error("crashing plugin");
 return 0; /* not reached, 0 means ok */ }

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 14 / 70

Writing simple plugins [in C++] overview and hints

compiling a plugin
On Debian (or Ubuntu,) first install appropriate packages g++-4.8 gcc-4.8-plugin-dev

Use gcc -print-file-name=plugin giving /usr/lib/gcc/x86_64-linux-gnu/4.8/plugin

So compile the crashplugin.cc with

g++ -g -Wall -shared -fPIC \
-I $(gcc -print-file-name=plugin)/include \
crashplugin.cc -o crashplugin.so

Test it on some helloworld.c with

gcc -fplugin=./crashplugin.so -Wall -O -c helloworld.c

crashing GCC compiler version 4.8 date 20140217
cc1: fatal error: crashing plugin
compilation terminated.

Many distribution specific gcc compilers sometimes give incorrectly a strange message “The
bug is not reproducible, so it is likely a hardware or OS problem.” for plugin errors. To
distribution makers: please improve the wording by mentioning plugins!

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 15 / 70

Writing simple plugins [in C++] overview and hints

About Gcc

Gcc is complex (≈ 10 millions lines of source code) and old.
Gcc can be a cross-compiler
complexity of source languages (C, C++, Ada, Fortran) [multi-threading]
complexity of target processors [multi-core]
complexity and variety of compiled software
the increasing gap between languages and processsors requires
powerful optimization6 techniques

Gcc is constantly evolving (≈ 400 maintainers, +3.96% more code from 4.7 to 4.8)

Gcc is mostly written7 in C++2003 but most files are still named *.c
Some of the code is generated by internal C++ code generators.
read Gcc internals on http://gcc.gnu.org/onlinedocs/gccint/

many tutorial resources on GCC Resource Center, IIT Bombay
http://www.cse.iitb.ac.in/grc/

many other resources on the web, and the wiki
http://gcc.gnu.org/wiki

6Recall that optimization is an undecidable (or at least untractable) problem!
7C++ is possible in Gcc since May 2010, effective since gcc-4.8 on March 2013.

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 16 / 70

http://gcc.gnu.org/onlinedocs/gccint/
http://www.cse.iitb.ac.in/grc/
http://gcc.gnu.org/wiki
http://gcc.gnu.org/ml/gcc/2010-05/msg00705.html
http://gcc.gnu.org/gcc-4.8/changes.html

Writing simple plugins [in C++] overview and hints

practical hints

use a very recent8 version of Gcc

subscribe and read gcc@gcc.gnu.org archived on
http://gcc.gnu.org/ml/gcc/ (also, use IRC)
for Melt subscribe to gcc-melt@googlegroups.com

perhaps build 9 your debug version of Gcc from the FSF source tarball
../gcc-4.8.2/configure --enable-plugins --enable-checks \

--disable-bootstrap --enable-languages=c,c++,lto \
--program-suffix=-4.8-dbg ’CFLAGS=-g -O’ ’CXXFLAGS=-O -g’

make -j 4
make install DESTDIR=/tmp/gccinst/
sudo cp -v -a /tmp/gccinst/usr/local/. /usr/local/.

keep and study your Gcc source tree
publish early your plugin (e.g. to easily get help), even in α stage.

8Plugin support is improving in Gcc, so is better in GCC 4.9 [to be released in spring 2014]
than in 4.8 or 4.7!

9in a build tree outside of the gcc-4.8.2/ source tree!

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 17 / 70

http://gcc.gnu.org/ml/gcc/

Writing simple plugins [in C++] Gimple internal representation[s]

Gimple internal representation

Defined in commented file gcc/gimple.def of the Gcc source tree:
Gimple are internal data in cc1 memory and type gimple is a pointer:
typedef struct gimple_statement_base *gimple; in file
gcc/coretypes.h

also defined by corresponding struct and the API of functions handling
them in gcc/gimple.h etc ... (gcc/gimple-*.h)
40 cases, i.e. invocation of macro DEFGSCODE, with 17 dedicated to
OpenMP (e.g. GIMPLE_OMP_FOR)
often a “3 address” virtual instruction with important exceptions:
GIMPLE_CALL, GIMPLE_PHI for SSA, GIMPLE_SWITCH, . . .
Gimple operands are often Tree-s
Gimple-s are linked together, so typedef gimple gimple_seq; and
gimple_seq are gimple-s.

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 18 / 70

Writing simple plugins [in C++] Gimple internal representation[s]

Gimple internal representation - conditional

(code from trunk on march 2014, i.e. future GCC 4.9)

/* GIMPLE_COND <COND_CODE, OP1, OP2, TRUE_LABEL, FALSE_LABEL>
represents the conditional jump:

if (OP1 COND_CODE OP2) goto TRUE_LABEL else goto FALSE_LABEL

COND_CODE is the tree code used as the comparison predicate. It
must be of class tcc_comparison.

OP1 and OP2 are the operands used in the comparison. They must be
accepted by is_gimple_operand.

TRUE_LABEL and FALSE_LABEL are the LABEL_DECL nodes used as the
jump target for the comparison. */

DEFGSCODE(GIMPLE_COND, "gimple_cond", GSS_WITH_OPS)

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 19 / 70

Writing simple plugins [in C++] Gimple internal representation[s]

Gimple I.R. - assignment & arithmetic

For C code like x = y * z; or x = p->f; or x = y; or x = (int)y;

/* GIMPLE_ASSIGN <SUBCODE, LHS, RHS1[, RHS2]> represents the assignment
statement

LHS = RHS1 SUBCODE RHS2.

SUBCODE is the tree code for the expression computed by the RHS of the
assignment. It must be one of the tree codes accepted by
get_gimple_rhs_class. If LHS is not a gimple register according to
is_gimple_reg, SUBCODE must be of class GIMPLE_SINGLE_RHS.

LHS is the operand on the LHS of the assignment. It must be a tree node
accepted by is_gimple_lvalue.

RHS1 is the first operand on the RHS of the assignment. It must always be
present. It must be a tree node accepted by is_gimple_val.

RHS2 is the second operand on the RHS of the assignment. It must be a tree
node accepted by is_gimple_val. This argument exists only if SUBCODE is
of class GIMPLE_BINARY_RHS. */

DEFGSCODE(GIMPLE_ASSIGN, "gimple_assign", GSS_WITH_MEM_OPS)

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 20 / 70

Writing simple plugins [in C++] Gimple internal representation[s]

Gimple I.R. - call & return

/* GIMPLE_CALL <FN, LHS, ARG1, ..., ARGN[, CHAIN]> represents function
calls.

FN is the callee. It must be accepted by is_gimple_call_addr.

LHS is the operand where the return value from FN is stored. It may
be NULL.

ARG1 ... ARGN are the arguments. They must all be accepted by
is_gimple_operand.

CHAIN is the optional static chain link for nested functions. */
DEFGSCODE(GIMPLE_CALL, "gimple_call", GSS_CALL)

/* GIMPLE_RETURN <RETVAL> represents return statements.

RETVAL is the value to return or NULL. If a value is returned it
must be accepted by is_gimple_operand. */

DEFGSCODE(GIMPLE_RETURN, "gimple_return", GSS_WITH_MEM_OPS)

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 21 / 70

Writing simple plugins [in C++] Gimple internal representation[s]

Gimple I.R. - goto, label, switch

/* GIMPLE_GOTO <TARGET> represents unconditional jumps.
TARGET is a LABEL_DECL or an expression node for computed GOTOs. */

DEFGSCODE(GIMPLE_GOTO, "gimple_goto", GSS_WITH_OPS)

/* GIMPLE_LABEL <LABEL> represents label statements. LABEL is a
LABEL_DECL representing a jump target. */

DEFGSCODE(GIMPLE_LABEL, "gimple_label", GSS_WITH_OPS)

/* GIMPLE_SWITCH <INDEX, DEFAULT_LAB, LAB1, ..., LABN> represents the
multiway branch:

switch (INDEX)
{
case LAB1: ...; break;
...
case LABN: ...; break;
default: ...

}

INDEX is the variable evaluated to decide which label to jump to.

DEFAULT_LAB, LAB1 ... LABN are the tree nodes representing case labels.
They must be CASE_LABEL_EXPR nodes. */

DEFGSCODE(GIMPLE_SWITCH, "gimple_switch", GSS_WITH_OPS)

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 22 / 70

Writing simple plugins [in C++] Gimple internal representation[s]

Gimple I.R. - φ nodes in SSA

In SSA (static single assigment) form, each SSA variable is assigned once10

So “merging” values (coming from different control paths) within phi nodes is
needed:
/* GIMPLE_PHI <RESULT, ARG1, ..., ARGN> represents the PHI node

RESULT = PHI <ARG1, ..., ARGN>

RESULT is the SSA name created by this PHI node.

ARG1 ... ARGN are the arguments to the PHI node. N must be
exactly the same as the number of incoming edges to the basic block
holding the PHI node. Every argument is either an SSA name or a
tree node of class tcc_constant. */

DEFGSCODE(GIMPLE_PHI, "gimple_phi", GSS_PHI)

NB: a φ node might generate no code!

10So the compiler knows where an SSA variable is defined, and where it is used: use-def
chains.

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 23 / 70

Writing simple plugins [in C++] Gimple internal representation[s]

Dumping the Gimple I.R. - code example

Use the -fdump-tree-gimple or -fdump-tree-all program argument
to gcc or g++, . . . Our C source code example:

 // file mean-stat.c
 #include <sys/types.h>
 #include <sys/stat.h>
 #include <unistd.h>
 #include <stdint.h>
 // return the mean modification time of paths after a given time
 time_t
 mean_mtime_after (const char*pathtab[], unsigned nbpath, time_t aftertim) {
 int64_t sumtime=0;

 unsigned count=0;
 for (unsigned ix=0; ix<nbpath; ix++) {
 const char*curpath = pathtab[ix];
 if (!curpath) break;
 struct stat st= {0};
 if (stat (curpath, &st) || st.st_mtime < aftertim) continue;
 sumtime += (int64_t) st.st_mtime; // i.e. st.st_mtim.tv_sec
 count++;
 }
 return (count>0)?(time_t)(sumtime/count):-1; }

Compile with gcc -std=c99 -Wall -O -fdump-tree-all -c mean-stat.c

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 24 / 70

Writing simple plugins [in C++] Gimple internal representation[s]

Dumping the Gimple I.R. - many dump files

Getting about 85 dump files like [incomplete list] :

mean-stat.c.033t.profile_estimate mean-stat.c.088t.copyprop4
mean-stat.c.249t.statistics mean-stat.c.089t.sincos
mean-stat.c.134t.phiopt3 mean-stat.c.091t.crited1
mean-stat.c.135t.fab1 mean-stat.c.093t.sink
mean-stat.c.138t.copyrename4 mean-stat.c.096t.loop
mean-stat.c.139t.crited2 mean-stat.c.097t.loopinit
mean-stat.c.140t.uninit1 mean-stat.c.098t.lim1
mean-stat.c.058t.phiprop mean-stat.c.011t.cfg
mean-stat.c.059t.forwprop2 mean-stat.c.015t.ssa
mean-stat.c.071t.phiopt1 mean-stat.c.061t.alias

Anatomy of dump file name mean-stat.c.134t.phiopt3 :
mean-stat.c prefix: the same base name as the compiled source
.134t unique infix : a meaningless unique number11 + dump type
.phiopt suffix : print name of some internal Gcc pass producing that
dump
3 optional pass numbering : if the same pass is invoked several times

11That dump file number is not chronological and not logical!
Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 25 / 70

Writing simple plugins [in C++] Gimple internal representation[s]

Gimple I.R. dumps - caveat

Important things to know:
dump files show a partial textual view of internal representations
(the in memory representation is richer - it is a complex graph of data structures
-, e.g. knows about source location, containing basic blocks, etc . . .)

Gcc optimization passes are enriching & modifying the I.R.
in some [early] passes the I.R. may be incomplete
(and some early I.R. might become lost in later passes)

some passes are transforming and replacing the I.R.
textual dumps are useful to give a glimpse, but what really matters to
plugins (and to Gcc middle-end) is the in memory data internal
representations

(dump files are verbose; we are reformatting and/or editing them.)

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 26 / 70

Writing simple plugins [in C++] Gimple internal representation[s]

upper Gimple I.R. mean-stat.c.004t.gimple

mean_mtime_after (const char ** pathtab,
unsigned int nbpath, time_t aftertim) {

long unsigned int D.2231, D.2232;
const char ** D.2233; int D.2237; long int D.2239;
time_t D.2240, iftmp.0; long int D.2244;
int64_t sumtime; unsigned int count;
sumtime = 0;
count = 0;
{ unsigned int ix;
ix = 0;
goto <D.2229>;
<D.2228>:
{ const char * curpath; struct stat st;

try {
D.2231 = (long unsigned int) ix;
D.2232 = D.2231 * 8;
D.2233 = pathtab + D.2232;
curpath = *D.2233;
if (curpath == 0B) goto <D.2225>;
else goto <D.2234>;
<D.2234>:
st = {};
D.2237 = stat (curpath, &st);
if (D.2237 != 0) goto <D.2235>;
else goto <D.2238>;
<D.2238>:
D.2239 = st.st_mtime;
if (D.2239 < aftertim) goto <D.2235>;

else goto <D.2236>;
<D.2235>:
// predicted unlikely by continue predictor.
goto <D.2227>;
<D.2236>:
D.2239 = st.st_mtime;
sumtime = D.2239 + sumtime;
count = count + 1;

} finally {
st = {CLOBBER}; } }

<D.2227>:
ix = ix + 1;
<D.2229>:
if (ix < nbpath) goto <D.2228>;
else goto <D.2225>;
<D.2225>: }

if (count != 0) goto <D.2242>;
else goto <D.2243>;
<D.2242>:
D.2244 = (long int) count;
iftmp.0 = sumtime / D.2244;
goto <D.2245>;
<D.2243>:
iftmp.0 = -1;
<D.2245>:
D.2240 = iftmp.0;
return D.2240; }

// missing stat function below

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 27 / 70

Writing simple plugins [in C++] Gimple internal representation[s]

SSA Gimple I.R. mean-stat.c.015t.ssa partly

mean_mtime_after (const char ** pathtab,
unsigned int nbpath, time_t aftertim)

{ struct stat st; const char * curpath;
unsigned int ix, count;
int64_t sumtime;
time_t iftmp.0_6;
long unsigned int _15, _16;
const char * * _18;
int _22;
long int _23, _25, _32;
time_t iftmp.0_33, iftmp.0_34, _35;

<bb 2>:
sumtime_10 = 0;
count_11 = 0;
ix_12 = 0;
goto <bb 10>;

<bb 3>:
_15 = (long unsigned int) ix_5;
_16 = _15 * 8;
_18 = pathtab_17(D) + _16;
curpath_19 = *_18;
if (curpath_19 == 0B)

goto <bb 8>;
else

goto <bb 4>;

<bb 4>:
st = {};
_22 = stat (curpath_19, &st);
if (_22 != 0)
goto <bb 6>;

else
goto <bb 5>;

<bb 5>:
_23 = st.st_mtime;
if (_23 < aftertim_24(D))
goto <bb 6>;

else
goto <bb 7>;

<bb 6>:
// predicted unlikely by continue predictor.
st ={v} {CLOBBER};
goto <bb 9>;

<bb 7>:
_25 = st.st_mtime;
sumtime_26 = _25 + sumtime_2;
count_27 = count_4 + 1;
st ={v} {CLOBBER};
goto <bb 9>;

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 28 / 70

Writing simple plugins [in C++] Gimple internal representation[s]

φ-optimized Gimple I.R. mean-stat.c.134t.phiopt3 partly

mean_mtime_after (const char ** pathtab,
unsigned int nbpath, time_t aftertim){

unsigned long ivtmp.7; struct stat st;
const char * curpath; unsigned int ix, count;
int64_t sumtime; time_t iftmp.0_6;
const char * * _8; long int _19, _27;
time_t iftmp.0_28; int _29; void * _30;
unsigned int _31; sizetype _32, _49, _50;
const char ** _51; unsigned long _52;

<bb 2>:
if (nbpath_11(D) != 0)
goto <bb 3>;

else goto <bb 14>;

<bb 3>:
curpath_37 = *pathtab_14(D);
if (curpath_37 == 0B)
goto <bb 10>;

else goto <bb 4>;

<bb 4>:
_8 = pathtab_14(D) + 8;
ivtmp.7_5 = (unsigned long) _8;
_31 = nbpath_11(D) + 4294967295;
_32 = (sizetype) _31;
_49 = _32 + 1;
_50 = _49 * 8;
_51 = pathtab_14(D) + _50;

_52 = (unsigned long) _51;
goto <bb 6>;

<bb 5>:
ivtmp.7_4 = ivtmp.7_2 + 8;
_30 = (void *) ivtmp.7_4;
curpath_16 = MEM[base: _30, offset: -8B];
if (curpath_16 == 0B)

goto <bb 10>;
else goto <bb 6>;

<bb 6>:
sumtime_38 = PHI <0(4), sumtime_1(5)>

count_41 = PHI <0(4), count_3(5)>

curpath_47 = PHI <curpath_37(4), curpath_16(5)>

ivtmp.7_2 = PHI <ivtmp.7_5(4), ivtmp.7_4(5)>
st = {};
_29 = __xstat (1, curpath_47, &st);
if (_29 != 0)

goto <bb 8>;
else goto <bb 7>;

<bb 7>:
_19 = st.st_mtime;
if (_19 < aftertim_20(D))

goto <bb 8>;
else goto <bb 9>;
// etc

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 29 / 70

Writing simple plugins [in C++] Tree internal representation[s]

Tree internal representations

Look first inside gcc/tree.def: 211 common tree codes defined with
DEFTREECODE, notably the operators inside Gimple instructions12. Called
Generic since language independent.

Then look inside gcc/c-family/c-common.def: 5 more tree codes 13 for
C family (C, C++, Objective C . . .) languages, like SIZEOF_EXPR.

Also (for C++ AST) in gcc/cp/cp-tree.def, 74 more tree codes for C++
front-end, e.g. NEW_EXPR 14 or IF_STMT.

etc . . .

macro usage:

DEFTREECODE(tree_code,print_string,tree_class,arity)

12Before gimplification the source code abstract syntax tree (AST) is represented by Tree-s.
13near the front-end
14for operator new...
Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 30 / 70

http://gcc.gnu.org/onlinedocs/gccint/GENERIC.html

Writing simple plugins [in C++] Tree internal representation[s]

Tree I.R. - simple nodes

/* Any erroneous construct is parsed into a node of this type.
This type of node is accepted without complaint in all contexts
by later parsing activities, to avoid multiple error messages
for one error.
No fields in these nodes are used except the TREE_CODE. */

DEFTREECODE (ERROR_MARK, "error_mark", tcc_exceptional, 0)

/* Used to represent a name (such as, in the DECL_NAME of a decl node).
Internally it looks like a STRING_CST node.
There is only one IDENTIFIER_NODE ever made for any particular name.
Use ‘get_identifier’ to get it (or create it, the first time). */

DEFTREECODE (IDENTIFIER_NODE, "identifier_node", tcc_exceptional, 0)
/* First, the constants. */

/* Contents are in TREE_INT_CST_LOW and TREE_INT_CST_HIGH fields,
32 bits each, giving us a 64 bit constant capability. INTEGER_CST
nodes can be shared, and therefore should be considered read only.
They should be copied, before setting a flag such as TREE_OVERFLOW.
If an INTEGER_CST has TREE_OVERFLOW already set, it is known to be unique.
INTEGER_CST nodes are created for the integral types, for pointer
types and for vector and float types in some circumstances. */

DEFTREECODE (INTEGER_CST, "integer_cst", tcc_constant, 0)

/* Contents are in TREE_REAL_CST field. */
DEFTREECODE (REAL_CST, "real_cst", tcc_constant, 0)

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 31 / 70

Writing simple plugins [in C++] Tree internal representation[s]

Tree I.R. - function declarations
/* Declarations. All references to names are represented as ..._DECL

nodes. The decls in one binding context are chained through the
TREE_CHAIN field. Each DECL has a DECL_NAME field which contains
an IDENTIFIER_NODE. (Some decls, most often labels, may have zero
as the DECL_NAME). DECL_CONTEXT points to the node representing
the context in which this declaration has its scope. For
FIELD_DECLs, this is the RECORD_TYPE, UNION_TYPE, or
QUAL_UNION_TYPE node that the field is a member of. For VAR_DECL,
PARM_DECL, FUNCTION_DECL, LABEL_DECL, and CONST_DECL nodes, this
points to either the FUNCTION_DECL for the containing function, the
RECORD_TYPE or UNION_TYPE for the containing type, or NULL_TREE or
a TRANSLATION_UNIT_DECL if the given decl has "file scope".
///
FUNCTION_DECLs use four special fields:
DECL_ARGUMENTS holds a chain of PARM_DECL nodes for the arguments.
DECL_RESULT holds a RESULT_DECL node for the value of a function.
The DECL_RTL field is 0 for a function that returns no value.
(C functions returning void have zero here.)
The TREE_TYPE field is the type in which the result is actually
returned. This is usually the same as the return type of the
FUNCTION_DECL, but it may be a wider integer type because of
promotion.

DECL_FUNCTION_CODE is a code number that is nonzero for
built-in functions. Its value is an enum built_in_function
that says which built-in function it is.

DECL_SOURCE_FILE holds a filename string and DECL_SOURCE_LINE
holds a line number. In some cases these can be the location of
a reference, if no definition has been seen. */

DEFTREECODE (FUNCTION_DECL, "function_decl", tcc_declaration, 0)

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 32 / 70

Writing simple plugins [in C++] Tree internal representation[s]

Tree I.R. - reference to storage

/* Value is structure or union component.
Operand 0 is the structure or union (an expression).
Operand 1 is the field (a node of type FIELD_DECL).
Operand 2, if present, is the value of DECL_FIELD_OFFSET, measured
in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. */

DEFTREECODE (COMPONENT_REF, "component_ref", tcc_reference, 3)

/* Reference to a group of bits within an object. Similar to COMPONENT_REF
except the position is given explicitly rather than via a FIELD_DECL.
Operand 0 is the structure or union expression;
operand 1 is a tree giving the constant number of bits being referenced;
operand 2 is a tree giving the constant position of the first referenced bit.
The result type width has to match the number of bits referenced.
If the result type is integral, its signedness specifies how it is extended
to its mode width. */
DEFTREECODE (BIT_FIELD_REF, "bit_field_ref", tcc_reference, 3)

/* Array indexing.
Operand 0 is the array; operand 1 is a (single) array index.
Operand 2, if present, is a copy of TYPE_MIN_VALUE of the index.
Operand 3, if present, is the element size, measured in units of
the alignment of the element type. */
DEFTREECODE (ARRAY_REF, "array_ref", tcc_reference, 4)

/* C unary ‘*’ or Pascal ‘^’. One operand, an expression for a pointer. */
DEFTREECODE (INDIRECT_REF, "indirect_ref", tcc_reference, 1)

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 33 / 70

Writing simple plugins [in C++] Tree internal representation[s]

Tree I.R. - some binary arithmetic operations
/* Simple arithmetic. */
DEFTREECODE (PLUS_EXPR, "plus_expr", tcc_binary, 2)
DEFTREECODE (MINUS_EXPR, "minus_expr", tcc_binary, 2)
DEFTREECODE (MULT_EXPR, "mult_expr", tcc_binary, 2)
/* Pointer addition. The first operand is always a pointer and the

second operand is an integer of type sizetype. */
DEFTREECODE (POINTER_PLUS_EXPR, "pointer_plus_expr", tcc_binary, 2)

/* Highpart multiplication. For an integral type with precision B,
returns bits [2B-1, B] of the full 2*B product. */

DEFTREECODE (MULT_HIGHPART_EXPR, "mult_highpart_expr", tcc_binary, 2)

/* Division for integer result that rounds the quotient toward zero. */
DEFTREECODE (TRUNC_DIV_EXPR, "trunc_div_expr", tcc_binary, 2)

/* Division for integer result that rounds the quotient toward infinity. */
DEFTREECODE (CEIL_DIV_EXPR, "ceil_div_expr", tcc_binary, 2)
/// ...
/* Bitwise operations. Operands have same mode as result. */
DEFTREECODE (BIT_IOR_EXPR, "bit_ior_expr", tcc_binary, 2)
DEFTREECODE (BIT_XOR_EXPR, "bit_xor_expr", tcc_binary, 2)
DEFTREECODE (BIT_AND_EXPR, "bit_and_expr", tcc_binary, 2)
/// ...
/* Minimum and maximum values. When used with floating point, if both

operands are zeros, or if either operand is NaN, then it is unspecified
which of the two operands is returned as the result. */

DEFTREECODE (MIN_EXPR, "min_expr", tcc_binary, 2)
DEFTREECODE (MAX_EXPR, "max_expr", tcc_binary, 2)

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 34 / 70

Writing simple plugins [in C++] Tree internal representation[s]

Tree I.R. - some unary arithmetic operations
/* Conversion of real to fixed point by truncation. */
DEFTREECODE (FIX_TRUNC_EXPR, "fix_trunc_expr", tcc_unary, 1)
/* Conversion of an integer to a real. */
DEFTREECODE (FLOAT_EXPR, "float_expr", tcc_unary, 1)
/* Unary negation. */
DEFTREECODE (NEGATE_EXPR, "negate_expr", tcc_unary, 1)
/* Represents the absolute value of the operand.

An ABS_EXPR must have either an INTEGER_TYPE or a REAL_TYPE. The
operand of the ABS_EXPR must have the same type. */

DEFTREECODE (ABS_EXPR, "abs_expr", tcc_unary, 1)
/// bitwise not
DEFTREECODE (BIT_NOT_EXPR, "bit_not_expr", tcc_unary, 1)
/* Represents a re-association barrier for floating point expressions

like explicit parenthesis in fortran. */
DEFTREECODE (PAREN_EXPR, "paren_expr", tcc_unary, 1)
/* Represents a conversion of type of a value.

All conversions, including implicit ones, must be
represented by CONVERT_EXPR or NOP_EXPR nodes. */

DEFTREECODE (CONVERT_EXPR, "convert_expr", tcc_unary, 1)
/* Represents a conversion expected to require no code to be generated. */
DEFTREECODE (NOP_EXPR, "nop_expr", tcc_unary, 1)
///
/* Unpack (extract) the high/low elements of the input vector, convert

fixed point values to floating point and widen elements into the
output vector. The input vector has twice as many elements as the output
vector, that are half the size of the elements of the output vector. */

DEFTREECODE (VEC_UNPACK_FLOAT_HI_EXPR, "vec_unpack_float_hi_expr", tcc_unary, 1)
DEFTREECODE (VEC_UNPACK_FLOAT_LO_EXPR, "vec_unpack_float_lo_expr", tcc_unary, 1)

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 35 / 70

Writing simple plugins [in C++] Tree internal representation[s]

Tree I.R. - tree code classes

In gcc/tree-core.h:
/* Tree code classes. Each tree_code has an associated code class

represented by a TREE_CODE_CLASS. */
enum tree_code_class {
tcc_exceptional, /* An exceptional code (fits no category). */
tcc_constant, /* A constant. */
/* Order of tcc_type and tcc_declaration is important. */
tcc_type, /* A type object code. */
tcc_declaration, /* A declaration (also serving as variable refs). */
tcc_reference, /* A reference to storage. */
tcc_comparison, /* A comparison expression. */
tcc_unary, /* A unary arithmetic expression. */
tcc_binary, /* A binary arithmetic expression. */
tcc_statement, /* A statement expression, which have side effects

but usually no interesting value. */
tcc_vl_exp, /* A function call or other expression with a

variable-length operand vector. */
tcc_expression /* Any other expression. */

};

NB: Tree-s and Gimple-s are carefully crafted (changing rarely) data structures !

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 36 / 70

Writing simple plugins [in C++] Optimization passes

Gcc optimization passes

Gcc has many (≈ 275) optimization passes (organized in a tree, with some
passes running sub-passes)

Every compilation15 runs a lot of them, try flag -fdump-passes

the actually running passes depend upon the optimization flags (-O2 or
-O0 etc . . .) and dynamically upon the compiled source code.
Four types of passes (in gcc/tree-pass.h):

1 GIMPLE_PASS : simple (intra-procedural) Gimple pass (on a single function,
pointed by cfun)

2 SIMPLE_IPA_PASS : simple inter-procedural analysis (IPA) pass
3 IPA_PASS : full IPA pass (may be LTO related)
4 RTL_PASS : RTL (back-end) pass

Plugins can add, remove, or reorganize passes
Some passes are highly specialized (e.g. sincos pass for sin and cos and
power), others are very general (e.g. phiopt running several times).
See files gcc/passes.def, gcc/tree-passes.h, gcc/passes.c,
gcc/pass_manager.h and gcc/tree-optimize.c

15Even without optimization
Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 37 / 70

Writing simple plugins [in C++] Optimization passes

Passes definition - gcc/passes.def partly

/*
Macros that should be defined when using this file:

INSERT_PASSES_AFTER (PASS)
PUSH_INSERT_PASSES_WITHIN (PASS)
POP_INSERT_PASSES ()
NEXT_PASS (PASS)
TERMINATE_PASS_LIST ()

*/
/* All passes needed to lower the function into shape optimizers can

operate on. These passes are always run first on the function, but
backend might produce already lowered functions that are not processed
by these passes. */

INSERT_PASSES_AFTER (all_lowering_passes)
NEXT_PASS (pass_warn_unused_result);
NEXT_PASS (pass_diagnose_omp_blocks);
NEXT_PASS (pass_diagnose_tm_blocks);
NEXT_PASS (pass_lower_omp);
/// ... etc
NEXT_PASS (pass_build_cfg);
NEXT_PASS (pass_warn_function_return);
NEXT_PASS (pass_expand_omp);
NEXT_PASS (pass_build_cgraph_edges);
TERMINATE_PASS_LIST ()
/* Interprocedural optimization passes. */
INSERT_PASSES_AFTER (all_small_ipa_passes)
NEXT_PASS (pass_ipa_free_lang_data);
NEXT_PASS (pass_ipa_function_and_variable_visibility);
NEXT_PASS (pass_early_local_passes);
PUSH_INSERT_PASSES_WITHIN (pass_early_local_passes)

NEXT_PASS (pass_fixup_cfg);
NEXT_PASS (pass_init_datastructures);

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 38 / 70

Writing simple plugins [in C++] Optimization passes

pass instances

indirect sub-classes of gcc::opt_pass from gcc/tree-pass.h

name field: terse name16 of the pass used as a fragment of the dump file
name (unless starting with *)

gate function with has_gate flag: decide if the pass should be executed.
execute function with has_execute flag: do the real work (changing the
I.R.)

properties: bit flags for required, provided, destroyed properties, e.g.
PROP_cfg or PROP_ssa, etc...

todo: bit flags for things to do before start or after finishing the pass e.g.
TODO_do_not_ggc_collect, or TODO_update_ssa, or
TODO_verify_flow, etc...

full IPA passes have much more LTO related hooks: e.g.
generate_summary, write_summary, read_summary,
function_transform etc...

16The pass name is not always immediately related to identifiers inside the Gcc source code!

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 39 / 70

Writing simple plugins [in C++] Gcc hooks for plugins

Gcc plugin events in gcc/plugin.def (part 1 of 2)

/* To hook into pass manager. */
DEFEVENT (PLUGIN_PASS_MANAGER_SETUP)
/* After finishing parsing a type. */
DEFEVENT (PLUGIN_FINISH_TYPE)
/* After finishing parsing a declaration. */
DEFEVENT (PLUGIN_FINISH_DECL)
/* Useful for summary processing. */
DEFEVENT (PLUGIN_FINISH_UNIT)
/* Allows to see low level AST in C and C++ frontends. */
DEFEVENT (PLUGIN_PRE_GENERICIZE)
/* Called before GCC exits. */
DEFEVENT (PLUGIN_FINISH)
/* Information about the plugin. */
DEFEVENT (PLUGIN_INFO)
/* Called at start of GCC Garbage Collection. */
DEFEVENT (PLUGIN_GGC_START)
/* Extend the GGC marking. */
DEFEVENT (PLUGIN_GGC_MARKING)
/* Called at end of GGC. */
DEFEVENT (PLUGIN_GGC_END)
/* Register an extra GGC root table. */
DEFEVENT (PLUGIN_REGISTER_GGC_ROOTS)
/* Register an extra GGC cache table. */
DEFEVENT (PLUGIN_REGISTER_GGC_CACHES)
/* Called during attribute registration. */
DEFEVENT (PLUGIN_ATTRIBUTES)

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 40 / 70

Writing simple plugins [in C++] Gcc hooks for plugins

Gcc plugin events in gcc/plugin.def (part 2 of 2)

/* Called before processing a translation unit. */
DEFEVENT (PLUGIN_START_UNIT)
/* Called during pragma registration. */
DEFEVENT (PLUGIN_PRAGMAS)
/* Called before first pass from all_passes. */
DEFEVENT (PLUGIN_ALL_PASSES_START)
/* Called after last pass from all_passes. */
DEFEVENT (PLUGIN_ALL_PASSES_END)
/* Called before first ipa pass. */
DEFEVENT (PLUGIN_ALL_IPA_PASSES_START)
/* Called after last ipa pass. */
DEFEVENT (PLUGIN_ALL_IPA_PASSES_END)
/* Allows to override pass gate decision for current_pass. */
DEFEVENT (PLUGIN_OVERRIDE_GATE)
/* Called before executing a pass. */
DEFEVENT (PLUGIN_PASS_EXECUTION)
/* Called before executing subpasses of a GIMPLE_PASS in

execute_ipa_pass_list. */
DEFEVENT (PLUGIN_EARLY_GIMPLE_PASSES_START)
/* Called after executing subpasses of a GIMPLE_PASS in

execute_ipa_pass_list. */
DEFEVENT (PLUGIN_EARLY_GIMPLE_PASSES_END)
/* Called when a pass is first instantiated. */
DEFEVENT (PLUGIN_NEW_PASS)
/* Called when a file is #include-d or given thru #line directive.

Could happen many times. The event data is the included file path,
as a const char* pointer. */

DEFEVENT (PLUGIN_INCLUDE_FILE)

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 41 / 70

Writing simple plugins [in C++] Gcc hooks for plugins

your hook for an event

Most events17 are for your hooks or callbacks, called from inside Gcc
(actually from cc1 etc...) thru invoke_plugin_callbacks

For some events18, Gcc is passing a pointer19 to your hook (otherwise NULL).
Advanced [meta-] plugins might register new events with
get_named_event_id from gcc/gcc-plugin.h.

Signature of your plugin hooks:
/* Function type for a plugin callback routine.

GCC_DATA - event-specific data provided by GCC
USER_DATA - plugin-specific data provided by the plugin */

typedef void (*plugin_callback_func) (void *gcc_data, void *user_data);

17Except PLUGIN_PASS_MANAGER_SETUP, PLUGIN_INFO,
PLUGIN_REGISTER_GGC_ROOTS, PLUGIN_REGISTER_GGC_CACHES

18PLUGIN_NEW_PASS, PLUGIN_OVERRIDE_GATE, PLUGIN_PASS_EXECUTION,
PLUGIN_FINISH_DECL, PLUGIN_FINISH_TYPE, PLUGIN_PRE_GENERICIZE

19The type and role of the pointed Gcc data is specific to the event.
Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 42 / 70

Writing simple plugins [in C++] Gcc hooks for plugins

Registering (& unregistering) your callback for an event

Often, your plugin_init will register a callback by calling:
/* This is also called without a callback routine for the

PLUGIN_PASS_MANAGER_SETUP, PLUGIN_INFO, PLUGIN_REGISTER_GGC_ROOTS and
PLUGIN_REGISTER_GGC_CACHES pseudo-events, with a specific user_data.
*/

extern void register_callback (const char *plugin_name,
int event,
plugin_callback_func callback,
void *user_data);

Notice that you need to register a callback -called once- even to add your pragmas or
attributes; you could not call register_attribute or c_register_pragma from
your plugin_init; that would be too early!

Later you might [rarely] want to remove your callback using
extern int unregister_callback (const char *plugin_name, int event);

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 43 / 70

Writing simple plugins [in C++] Gcc hooks for plugins

Adding a new pass from your plugin

To add your pass after the first pass named ssa :
1 define and fill your static pass meta-data const pass_data

your_pass_data = ... (with pass name, todo, properties, gate, execute . . .)

2 define YourPassClass, sub-class of gimple_opt_pass, using the shared
your_pass_data etc ...

3 define a factory function e.g.
static gimple_opt_pass *makeyourpass (gcc::context *ctxt)
{ return new YourPassClass(ctxt); }

4 declare a struct register_pass_info yourpassinfo; and fill it:
yourpassinfo.pass = makeyourpass (gcc::g);
yourpassinfo.reference_pass_name = "ssa";
yourpassinfo.ref_pass_instance_number = 1;
yourpassinfo.pos_op = PASS_POS_INSERT_AFTER;

Notice that gcc::g is a global pointer from gcc/context.h

5 register this new pass (near the end of your plugin_init)
register_callback (plugin_name, PLUGIN_PASS_MANAGER_SETUP, NULL,

&yourpassinfo);

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 44 / 70

Writing simple plugins [in C++] Gcc hooks for plugins

Adding your attributes in your plugin

(function or variable attributes are a Gcc extension, or in C++11, e.g. format or noreturn)

To add an attribute foo:
1 define your attribute handler callback

static tree handle_foo_attribute (tree *node, tree name, tree args,
int flags, bool *no_add_attrs);

2 define your attribute specification (see gcc/tree-core.h)
static struct attribute_spec foo_attr =
{ "foo", 1, 1, false, false, false, handle_foo_attribute, false };

3 define & register (in your plugin_init) a callback for
PLUGIN_ATTRIBUTES
static void register_your_attributes (void *, void *userdata)
{ register_attribute (&foo_attr); }

4 do something useful with your attribute, perhaps at
PLUGIN_PRE_GENERICIZE or in some pass . . .

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 45 / 70

Writing simple plugins [in C++] Gcc hooks for plugins

Adding your builtins or pragmas in your plugin
(builtin “functions” are compiled specially, e.g. __builtin_bswap16)
To add your builtins, at PLUGIN_START_UNIT time, call
add_builtin_function from gcc/langhook.h

(#pragma preprocessor directives or _Pragma operators convey specific hints to the compiler)

To add your pragmas, at PLUGIN_PRAGMAS time, call appropriately some of the
functions from gcc/c-family/c-pragma.h e.g.
/* Front-end wrappers for pragma registration. */
typedef void (*pragma_handler_1arg)(struct cpp_reader *);
/* A second pragma handler, which adds a void * argument allowing to pass extra

data to the handler. */
typedef void (*pragma_handler_2arg)(struct cpp_reader *, void *);
extern void c_register_pragma (const char *space, const char *name,

pragma_handler_1arg handler);
extern void c_register_pragma_with_data (const char *space, const char *name,

pragma_handler_2arg handler,
void *data);

extern void c_register_pragma_with_expansion (const char *space,
const char *name,
pragma_handler_1arg handler);

extern void c_register_pragma_with_expansion_and_data (const char *space,
const char *name,

pragma_handler_2arg handler,
void *data);

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 46 / 70

Writing simple plugins [in C++] Gcc hooks for plugins

Front-end functions unavailable from lto1

Your plugin cannot be dlopen-ed by lto1 if it references (as hard symbols)
front-end functions (pragma, attribute, builtin related) because lto1 don’t contain
any front-end.

Workaround (plugin working with both cc1plus and lto1): use weak symbols!
// Function pragma_lex is declared in c-family/c-pragma.h
extern enum cpp_ttype pragma_lex (tree *) __attribute__((weak));
// Function c_register_pragma_with_expansion_and_data from c-family/c-pragma.h
extern void
c_register_pragma_with_expansion_and_data (const char *space,

const char *name,
pragma_handler_2arg handler,
void *data) __attribute__((weak));

Then later in your plugin hook for PLUGIN_PRAGMAS
if (c_register_pragma_with_expansion_and_data) {
//// really register your pragmas
c_register_pragmas_with_expansion_and_data

("yourspace", "foobar", yourpragmahandler, yourdata);
}

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 47 / 70

Writing simple plugins [in C++] Gcc hooks for plugins

Memory management : Ggc (Gcc garbage collector)

Gcc has a (IMHO somehow poor) precise mark-&-sweep garbage collector:

many types20 or globals are annotated with GTY, e.g. (in gcc/ipa-ref.h)

struct GTY(()) ipa_ref {
symtab_node *referring;
symtab_node *referred;
gimple stmt;
unsigned int lto_stmt_uid;
unsigned int referred_index;
ENUM_BITFIELD (ipa_ref_use) use:2;
unsigned int speculative:1;

};

the gengtype C++ code generator emits allocating & marking routines
A garbage collection is explicitly called (thru ggc_collect from
gcc/ggc.h), usually between passes; some passes call ggc_free !!
but locals are not handled (so could be lost by GC)

so Ggc is not very used (at least usually not for “temporary” data inside passes)

Plugins could use Ggc: PLUGIN_REGISTER_GGC_ROOTS, PLUGIN_GGC_MARKING,
20Including tree-s, basic_block-s, edge-s, gimple-s etc . . . ; ≈ 2000 types are GTY-ed!

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 48 / 70

Extending GCC with MELT

1 Introduction

2 Writing simple plugins [in C++]
overview and hints
Gimple internal representation[s]
Tree internal representation[s]
Optimization passes
Gcc hooks for plugins

3 Extending GCC with MELT
MELT overview
Example pass in MELT

4 Advices and Conclusions
advices
why free software need GCC customization?

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 49 / 70

Extending GCC with MELT MELT overview

Why would you use MELT?

Coding your plugins in C++ may be painful, because
Gcc I.R. is complex
plugins often want to find patterns in it (e.g. on Gimple or Tree-s)

manually managing memory can be error-prone (and Ggc is not funny)

meta-programming facilities can be needed
MELT is a domain specific language to extend Gcc:

with strong pattern matching facilities
simple Lisp-like look & feel : closures, powerful macros21, homoiconic
“dynamically” typed (for its values) and garbage collected
internally translated to C++ with ability to mix C++ with Melt code
(Sometimes, the generated C++ code is compiled and dlopen-ed on the fly!)

But MELT has a Lisp-like syntax : (operator operands . . .)
(which should look familiar if you know Lisp or Scheme)

21In the Lisp sense: arbitrary meta-programming by runtime s-expr generation!

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 50 / 70

Extending GCC with MELT MELT overview

Hello, world in MELT

(for MELT 1.1 to be released soon, when GCC 4.9 is)

;; file helloworld.melt in the public domain
(module_is_gpl_compatible "public domain")
(let ((:cstring who (or (melt_argument "i-am") "world")))

(code_chunk sayhello_chk #{ /* in $SAYHELLO_CHK */
printf("MELT hello to %s\n", $WHO); }#))

Run it with the following command:

gcc -fplugin=melt -fplugin-arg-melt-mode=runfile \
-fplugin-arg-melt-arg=helloworld.melt \
-fplugin-arg-melt-i-am=Basile -c empty.c

getting (partly) with generation of C++ code with /* in SAYHELLO_CHK01 */ ... then
compilation and dlopen-ing

cc1: note: MELT generated new file /tmp/filerHkNQj-GccMeltTmp-50823f/helloworld.cc
cc1: note: MELT plugin has built module helloworld flavor quicklybuilt in /home/basile/LinuxCollabSummit
MELT hello to Basile
cc1: note: MELT removed 7 temporary files from /tmp/filerHkNQj-GccMeltTmp-50823f

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 51 / 70

Extending GCC with MELT MELT overview

MELT values vs stuff !

MELT brings you dynamically typed values (à la Python, Scheme, Javascript):
nil, or boxed { strings, integers, Tree-s, Gimples, ...}, closures, tuples,
lists, pairs, objects, homogeneous hash-tables . . .
garbage collected by MELT using copying generational techniques (old
generation is GTY-ed Ggc heap)
quick allocation, favoring very temporary values
first class citizens (every value has its discriminant - for objects their Melt class)

But Gcc stuff can be handled by MELT: raw Gcc tree-s, gimple-s, long-s,
const char* strings, etc . . .

Local data is garbage-collected22 (values by MELT GC, stuff only by Ggc)

Type annotations like :long, :cstring , :edge or :gimple . . . or :value
may be needed in MELT code (but also :auto à la C++11)

22Forwarding or marking routines for locals are generated!
Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 52 / 70

Extending GCC with MELT MELT overview

MELT values

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 53 / 70

Extending GCC with MELT MELT overview

Some MELT language features

expression-based language

local variable bindings with let or letrec

named defun and anonymous with lambda functions closures

Smalltalk-like object system defclass, defselector, instance w. dynamic
method dictionnary (inside classes or discrimants)

iterative constructs forever, exit, again, . . . (but no tail-recursion)

pattern matching with match (patterns with ?, so ?_ is wildcard catch-all pattern)

dynamic evaluation w. eval, quasi-quotation backquote ≡ ‘ & comma ≡ ,

macros with defmacro or local :macro binding in let

conditionals with if, cond, when, or, and, gccif (testing version of Gcc), . . .

multiple data results in function return and multicall

many ways to mix C++ code with Melt code: code_chunk, expr_chunk and
defining C++ generations defprimitive, defcmatcher, defciterator

environment introspection parent_module_environment and
current_module_environment_reference

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 54 / 70

Extending GCC with MELT Example pass in MELT

A pass in MELT - verifying melt-runtime.cc

The MELT runtime contains code like (for boxing integers)
melt_ptr_t meltgc_new_int (meltobject_ptr_t discr_p, long num) {
MELT_ENTERFRAME (2, NULL); // defines and initialize meltfram__

#define newintv meltfram__.mcfr_varptr[0]
#define discrv meltfram__.mcfr_varptr[1]
#define object_discrv ((meltobject_ptr_t)(discrv))
#define int_newintv ((struct meltint_st*)(newintv))

discrv = (melt_ptr_t) discr_p;
if (!discrv)
discrv = (melt_ptr_t) MELT_PREDEF (DISCR_INTEGER);

if (melt_magic_discr ((melt_ptr_t) (discrv)) != MELTOBMAG_OBJECT)
goto end;

if (object_discrv->meltobj_magic != MELTOBMAG_INT)
goto end;

newintv = (melt_ptr_t) meltgc_allocate (sizeof (struct meltint_st), 0);
int_newintv->discr = object_discrv;
int_newintv->val = num;

end:
MELT_EXITFRAME ();
return (melt_ptr_t) newintv; }

#undef newintv
#undef discrv
#undef int_newintv
#undef object_discrv

etc . . .

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 55 / 70

Extending GCC with MELT Example pass in MELT

A pass in MELT - checks to be done

On functions whose name contains meltgc_ or starts with meltrout_ :

notice all assignments and uses of some local pointer slot
meltfram__.mcfr_varptr[i]
warn about unused such slots
warn about bad index slots (negative or too big)

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 56 / 70

Extending GCC with MELT Example pass in MELT

the gate function in MELT

(defun meltframe_gate (pass)
(with_cfun_decl ()
(:tree cfundecl)
(match cfundecl

(?(tree_function_decl_named
?(cstring_containing "meltgc_") ?_)

(return :true)
)

(?(tree_function_decl_named
?(cstring_prefixed "meltrout_") ?_)

(return :true)
)

(?_ (return ())))))

Using the C-matcher defined as

;; cmatcher for a cstring starting with a given prefix
(defcmatcher cstring_prefixed
(:cstring str cstr) ()
strprefixed
#{/* cstring_prefixed $STRPREFIXED test*/ ($STR && $CSTR

&& !strncmp($STR, $CSTR, strlen ($CSTR))) }#)

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 57 / 70

Extending GCC with MELT Example pass in MELT

the execute function in MELT part 1 : finding meltfram__

(defun meltframe_exec (pass)
(let ((:long declcnt 0)

(:long bbcnt 0)
(:long gimplecnt 0)
(:tree tmeltframdecl (null_tree))
(:tree tmeltframtype (null_tree))
(:tree tmeltframvarptr (null_tree))
(:tree tfundecl (cfun_decl))
(:long nbvarptr 0)
)

(each_local_decl_cfun ()
(:tree tlocdecl :long ix)
(match tlocdecl

(?(tree_var_decl_named
?(and ?tvtyp

?(tree_record_type_with_fields ?tmeltframrecnam
?tmeltframfields))

?(cstring_same "meltfram__") ?_)
(setq tmeltframdecl tlocdecl)
(setq tmeltframtype tvtyp)

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 58 / 70

Extending GCC with MELT Example pass in MELT

the execute function in MELT part 2 : find its mcfr_varptr

(foreach_field_in_record_type
(tmeltframfields)
(:tree tcurfield)
(match tcurfield

(?(tree_field_decl
?(tree_identifier ?(cstring_same "mcfr_varptr"))
?(tree_array_type ?telemtype

?(tree_integer_type_bounded ?tindextype
?(tree_integer_cst 0)
?(tree_integer_cst ?lmax)
?tsize)))

(setq tmeltframvarptr tcurfield)
((setq nbvarptr lmax)
)

(?_ (void)))))))
((setq declcnt (+i declcnt 1)))

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 59 / 70

Extending GCC with MELT Example pass in MELT

execute function in MELT 3: find mcfr_varptr[i] = ...

(each_bb_cfun ()
(:basic_block bb :tree fundecl)
(setq bbcnt (+i bbcnt 1))
(eachgimple_in_basicblock
(bb) (:gimple g)
(setq gimplecnt (+i gimplecnt 1))
(match g

?(gimple_assign_single
?(tree_array_ref
?(tree_component_ref

tmeltframdecl
tmeltframvarptr)

?(tree_integer_cst ?ixkdst))
?rhs)

(cond
((<i ixkdst 0)
(warning_at_gimple g "negative meltvarptr destination pointer index")
)

((>i ixkdst nbvarptr)
(warning_at_gimple g "too big meltvarptr destination pointer index")
)

(:else
(meltframe_update_tuple_ptr tupdefptr ixkdst g)
))

)

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 60 / 70

Extending GCC with MELT Example pass in MELT

mode in MELT installing the pass - mode processing

(defun meltframe_docmd (cmd moduldata)
(let ((meltframedata

(instance class_melt_frame_data
:meltfram_funcount (box 0)
))

(meltframepass
(instance class_gcc_gimple_pass

:named_name ’"melt_frame_pass"
:gccpass_gate meltframe_gate
:gccpass_exec meltframe_exec
:gccpass_data meltframedata
:gccpass_properties_required ()
))

)
(install_melt_pass_in_gcc meltframepass :after ’"ssa" 0)
(at_exit_first
(lambda (x)
(let ((:long nbmeltrout

(get_int (get_field :meltfram_funcount meltframedata))))
(code_chunk informnbmelt
#{/* $INFORMNBMELT */
inform(UNKNOWN_LOCATION, "melt_frame_pass found %ld MELT routines",

$NBMELTROUT);
}#))))

(return :true)))

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 61 / 70

Extending GCC with MELT Example pass in MELT

defining and installing the mode

(definstance meltframe_mode
class_melt_mode
:named_name ’"meltframe"
:meltmode_help

’"install a pass checking MELT frame accesses"
:meltmode_fun meltframe_docmd

)
(install_melt_mode meltframe_mode)

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 62 / 70

Extending GCC with MELT Example pass in MELT

The tree_integer_cst C-matcher from
melt/xtramelt-ana-tree.melt

(defcmatcher tree_integer_cst
(:tree tr) (:long n) treeintk

;; test expander
#{ /*tree_integer_cst $TREEINTK ?*/

#if MELT_GCC_VERSION >= 4009 /* GCC 4.9 or later */
(($TR) && TREE_CODE($TR) == INTEGER_CST

&& tree_fits_shwi_p ($TR))
#else /* GCC 4.8*/
(($TR) && TREE_CODE($TR) == INTEGER_CST

&& host_integerp($TR, 0))
#endif /* GCC 4.8 */

}#
;; fill expander
#{ /*tree_integer_cst $TREEINTK !*/

#if MELT_GCC_VERSION >= 4009 /* GCC 4.9 or later */
$N = tree_to_shwi(($TR));

#else /* GCC 4.8 */
$N = tree_low_cst(($TR), 0);

#endif /* GCC 4.9 */
}#)

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 63 / 70

Advices and Conclusions

1 Introduction

2 Writing simple plugins [in C++]
overview and hints
Gimple internal representation[s]
Tree internal representation[s]
Optimization passes
Gcc hooks for plugins

3 Extending GCC with MELT
MELT overview
Example pass in MELT

4 Advices and Conclusions
advices
why free software need GCC customization?

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 64 / 70

Advices and Conclusions advices

General advices when customizing Gcc

non-trivial effort (weeks, not hours, of work)
make some toy (or test) cases (of compiled source code)
look carefully into their various Gimple representations before designing
your plugin
two kinds of customization:

1 inspection of existing I.R. (e.g. check coding rules, metrics, source
navigation)
need to process the relevant cases only

2 changing the existing I.R. (e.g. library specific optimization)
probably harder (be sure to handle all the cases!)

study the source code of Gcc

interact with the Gcc community
consider using MELT
(learning Melt is much easier than studying Gcc)

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 65 / 70

Advices and Conclusions advices

Where to insert your extra optimization pass?

A difficult issue for everyone (at least even for me, Basile).

at some early passes, the I.R. is incomplete
at some late passes, some of the I.R. is “rotten”
passes depend upon optimization levels and compiled source code
High-Gimple vs Gimple/Ssa?
interesting points: after cfg, ssa, phiopt
trial and error approach!
pass management (and set of available passes) vary slightly with Gcc
versions

See https:

//gcc-python-plugin.readthedocs.org/en/latest/tables-of-passes.html

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 66 / 70

https://gcc-python-plugin.readthedocs.org/en/latest/tables-of-passes.html
https://gcc-python-plugin.readthedocs.org/en/latest/tables-of-passes.html

Advices and Conclusions advices

Gcc plugins - version sensitivity

Gcc plugins are sensible to Gcc versions

plugins should be recompiled for a patch level change (e.g. 4.8.1→
4.8.2); generally a simple recompilation is enough (but some API might
slightly change23 ...)
plugins source code should be significantly changed for a Gcc version
change (e.g. 4.8.2→ 4.9.0); Some of the internal representations is
changing24

MELT demonstrates that with some work a plugin25 can be made to work
for two consecutive Gcc versions.
(mostly because of “social” or “workforce” reasons: Gcc is so big and complex that it is
slowly changing) So MELT abstracts a tiny bit such changes (but is not a silver
bullet), making your life slightly easier

23e.g. check_default_argument got a third argument in gcc/cp/cp-tree.h
24GIMPLE_OMP_TASKGROUP is new in 4.9!
25In its source form; the shared objects are specific to each version and configuration of Gcc!

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 67 / 70

Advices and Conclusions why free software need GCC customization?

Useful potential Gcc customizations

in Gtk, typing of variadic functions e.g. g_object_set
in Posix applications, coding rules check (e.g. every fork is checked for
failure in its calling function)

for Sql client libraries, simple checks to avoid some Sql injections
navigation aid to large free software (e.g. Linux kernel)
simple coding rules related to locking in pthread

supporting a precise garbage collection in C or C++
D.Malcom’s Python plugin checking Python↔ C glue code
(but TreeHydra abandonned in Firefox)

some simple symbolic simplification in numerical libraries? 0~v = ~0
etc . . .

Free software communities should know better what Gcc customizations
are beneficial to them

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 68 / 70

Advices and Conclusions why free software need GCC customization?

Why free software needs Gcc customization (with Melt) ?

Free software is increasingly important, and generally compiled by Gcc (e.g. in
Linux distributions)
Large free software communities should consider developping their own tools
as Gcc extensions (e.g. with Melt)

The Gcc compiler will become more “plugin friendly” when real Gcc plugins (or extension Melt) will
be developped - outside of, but in collaboration with, the Gcc community

Consider customizing26 Gcc for your free software
⇒ Then MELT is an appropriate tool for that customization!

26or asking someone to customize
Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 69 / 70

Advices and Conclusions why free software need GCC customization?

Thanks

Questions are welcome

Basile Starynkevitch GCC plugins thru MELT example March, 28th, 2014 (Linux Collab. Summit) ? 70 / 70

	Introduction
	Writing simple plugins [in C++]
	overview and hints
	Gimple internal representation[s]
	Tree internal representation[s]
	Optimization passes
	Gcc hooks for plugins

	Extending GCC with MELT
	MELT overview
	Example pass in MELT

	Advices and Conclusions
	advices
	why free software need GCC customization?

