
Customizing the GCC compiler with MELT

Basile STARYNKEVITCH
gcc-melt.org

basile@starynkevitch.net or basile.starynkevitch@cea.fr

CEA, LIST (Labo Sûreté du Logiciel), France

October 4th, 2013, Open World Forum (Paris, Montrouge)

B.Starynkevitch Customize GCC with MELT October, 4th, 2013 (OWF) ? 1 / 17

http://gcc-melt.org/
mailto:basile@starynkevitch.net
mailto:basile.starynkevitch@cea.fr

Caveat
All opinions are mine only

I (Basile) don’t speak for my employer, CEA (or my institute LIST)
I don’t speak for GCC community
I don’t speak for anyone else (e.g. funding agencies)
My opinions may be highly controversial
My opinions may change

Slides available online at gcc-melt.org under
(Creative Commons Attribution Share Alike 3.0 Unported license)

B.Starynkevitch Customize GCC with MELT October, 4th, 2013 (OWF) ♠ 2 / 17

http://gcc-melt.org

Why customize GCC?

Contents

1 Why customize GCC?

2 a glimpse of MELT and GCC internals

3 MELT = a domain specific language for your GCC customizations

B.Starynkevitch Customize GCC with MELT October, 4th, 2013 (OWF) ? 3 / 17

Why customize GCC?

About GCC

gcc.gnu.org : Gnu Compiler Collection Gcc
free GNU software (GPLv3+ licensed, FSF copyrighted)

related collection of optimizing compilers for many source languages :
C, C++ [2011], Ada, Fortran, Objective-C, [soon] D , Go, . . .
hosted on many systems : GNU/Linux, MacOSX, Android, other Unixes,
Hurd, Windows, . . .

targetting many processors (x86, ARM, Sparc, PowerPC, MIPS, Cris,
Xtensa, Mmix, . . .) and systems
main compiler on GNU/Linux; often used as cross-compiler
since 1985; current version 4.8 1; still growing (+6% in 2 years)

more than ten millions of source lines of code; ≈ 400 developers
customizable and extensible 2 thru plugins (e.g. MELT)

1Release 4.8.1: may 2013, 4.8.0: march 2013; 4.7.0: march 2012, 4.7.3: april 2013
2Since GCC 4.5 (april 2010) experimentally or 4.6 (march 2011) !

B.Starynkevitch Customize GCC with MELT October, 4th, 2013 (OWF) ? 4 / 17

http://gcc.gnu.org

Why customize GCC?

libiberty
utilities

pass
manager

other
utilities

foo.c le
xe

r,
 p

re
p

ro
c

to
ke

n
s

p
a
rs

e
r

g
e
n
e
ri

c
tr

e
e
s

g
im

p
lifi

e
r

g
im

p
le

s

simple
gimple
passes

g
im

p
le

s
..
.

cf
g

,
ss

a
,
..
.

inter-
procedural

gimple
passes

front-end middle-end

R
T
L

g
e
n
e
ra

to
r

RTL

RTL
optim.
passes

RTL
register allocator
instr. scheduler
peephole optim.

RTL passesa
sm

 e
m

it
te

r

RTL
back-end

foo.s

cc1 [+
]

overview

Ggc
Gcc Garbage

 Collector

your own

pass in MELT

MELT
translator
& runtime

bar.cc

B.Starynkevitch Customize GCC with MELT October, 4th, 2013 (OWF) ? 5 / 17

Why customize GCC?

Why and when customize Gcc ?

Gcc customization (with MELT or some other plugin 3, or even your own plugin
in C++) is worthwhile for advanced Gcc users (not for “hello world” programs!)

Compiler customization possible thru the GCC Runtime Library
Exception : plugins should be “GPLv3 compatible”.
work on and take advantage of some Gcc internal representations
profit of existing Gcc optimizations
when external textual approaches (grep, perl, awk . . .) are inadequate
examples

find all calls to malloc with a constant argument > 100 (generally,
malloc(sizeof τ) or malloc (2*sizeof τ) is not easily grep-able and may
appear after inlining and constant folding)
find all assignments to the next field of some struct packet_st
optimize fprintf (stdout, φ, α1 . . .) ⇒ printf(φ, α1 . . .)
semi-automatic validation of some industry-specific coding rules 4 (every
call to fork is tested for < 0 in the same function doing the fork)

3Like D.Malcom’s Gcc Python Plugin.
4or validation of API-specific coding rules
B.Starynkevitch Customize GCC with MELT October, 4th, 2013 (OWF) ? 6 / 17

http://www.gnu.org/licenses/gcc-exception-3.1.en.html
http://www.gnu.org/licenses/gcc-exception-3.1.en.html
http://https://fedorahosted.org/gcc-python-plugin/

a glimpse of MELT and GCC internals

Contents

1 Why customize GCC?

2 a glimpse of MELT and GCC internals

3 MELT = a domain specific language for your GCC customizations

B.Starynkevitch Customize GCC with MELT October, 4th, 2013 (OWF) ? 7 / 17

a glimpse of MELT and GCC internals

Importance of GCC optimizations
Gcc 5 is doing many important optimizations, because:

1 users want runtime performance (of their compiled code).
2 hardware is much farther from the low-level C language than it was in the

1980s (super-scalar out-of-order multi-core heterogeneous processors today!).
3 predicting hardware behavior (timing? energy consumption?) is

impossible today (how much nanoseconds cost this i++ in your C code ???).
4 languages standards are slowing raising the abstraction level.

int sumarrayof10(std::array<int,10> &t) // C++2011
{ int s=0;
std::for_each(t.begin(),t.end(),[&s](int e){s+=e;});
return s; }

same optimized code (but very different unoptimized code) as

int sumarrayof10(int *t) { int s=0; /* C99 */
for(int ix=0; ix<10; ix++) s+= t[ix];
return s; }

5Other industrial-strength compilers, e.g. Clang/LLVM, also have important optimizations...

B.Starynkevitch Customize GCC with MELT October, 4th, 2013 (OWF) ? 8 / 17

http://clang.llvm.org

a glimpse of MELT and GCC internals

find malloc-s of constant size > 100 with MELT

Just in one [long] command line with MELT 1.0 6 and GCC 4.7 or better

gcc -fplugin=melt -fplugin-arg-melt-mode=findgimple
-fplugin-arg-melt-arg=’
?(gimple_call_1

?(tree_function_decl_of_name "malloc" ?_ ?_)
?(tree_integer_cst ?(some_integer_greater_than 100))

)’ -O2 -c yourcode.c

That has to be done inside the compiler (because of inlining, constant folding,
sizeof, . . .) and cannot be done textually (e.g. using grep). It works by
pattern-matching on GCC internal representations :

gimple-s : elementary abstract instructions (e.g. function calls)
tree-s: abstract syntax trees (for declarations and operands)

Patterns are explained in a few slides!

6today oct.04 2013, rc1; real release of MELT 1.0 before october 15th, 2013.

B.Starynkevitch Customize GCC with MELT October, 4th, 2013 (OWF) ? 9 / 17

a glimpse of MELT and GCC internals

What is happening underneath?

gcc is a driver program which starts the compiler proper cc1
cc1 is loading the MELT plugin before proceeding (preprocessing, parsing,
front-end, middle-end, back-end, emission of assembler code)

MELT needs one (or more) mode[s] (otherwise, won’t do anything). List
them with -fplugin-arg-melt-mode=help or add your own.
the findgimple mode:

1 needs a pattern on Gimples as its argument
2 translates that pattern (using MELT macro system ...) into generated C++

code suitable for GCC
3 forks an internal make to compile that code into a shared object module 7

4 dynamically loads with dlopen that shared object module
5 runs the generated code which inserts a new GCC pass which

scan every compiled function for its Gimples
pattern-match each Gimple
shows a notice on success (with location in your source code)
give a summary (various counts) at end of compilation

7There is a way to keep for re-use that module
B.Starynkevitch Customize GCC with MELT October, 4th, 2013 (OWF) ? 10 / 17

a glimpse of MELT and GCC internals

Glance inside GCC passes

GCC runs many (> 200) optimization passes, use -fdump-passes to
find out which and the justshowpasses MELT mode. Several kinds of
passes:

1 plain GIMPLE_PASS working on a single function
2 SIMPLE_IPA_PASS for simple Inter-Procedural Analysis
3 complex IPA_PASS for link-time or full program or full-compilation unit

optimizations
4 RTL_PASS for backends (and target-specific optimizations)

See
gcc-python-plugin.readthedocs.org/en/latest/tables-of-passes.html

for a nice picture. You can insert your own pass coded in MELT.

B.Starynkevitch Customize GCC with MELT October, 4th, 2013 (OWF) ? 11 / 17

https://gcc-python-plugin.readthedocs.org/en/latest/tables-of-passes.html

a glimpse of MELT and GCC internals

Glance inside GCC trees and gimples

Tree-s represent abstract syntax trees of declarations (and operands) :
see tree.def header file for a list (> 200 kind of trees).
see melt/xtramelt-ana-tree.melt

Gimple-s represent elementary abstract instructions :
see gimple.def header file for a list (36 kind of gimples, half for
OpenMP support)
most Gimples are 3-operand assignments like x = y + z

variadic Gimples for calls, switches
see melt/xtramelt-ana-gimple.melt

Basic blocks contain a sequence of gimple-s and are linked by edges for
the control flow graph

Pass -fdump-tree-all to gcc to get hundreds of dump files. Or use the
MELT probe (GTK based).

B.Starynkevitch Customize GCC with MELT October, 4th, 2013 (OWF) ? 12 / 17

a glimpse of MELT and GCC internals

MELT pattern matching

One of the most exciting feature of MELT, the ability to digest arbritrary data
(either GCC internals or MELT values). Patterns are filtering and extracting
data (a bit like regexp-s are filtering and extracting strings). Patterns may be
nested.

?_ is a joker or wildcard pattern (that always matches).
?(some_integer_greater_than n) match integers > n
?(tree_integer_cst π) match tree-s representing a constant
integer which is matching the pattern π
?(tree_function_decl_of_name σ ν τ) match a tree for a
function declaration naned by the string σ; the name sub-tree should
match ν and the result type tree should match τ
?(gimple_call_1 δ α) match a gimple which is a call to a function
whose declaration matches δ and with an argument matching α

B.Starynkevitch Customize GCC with MELT October, 4th, 2013 (OWF) ? 13 / 17

MELT = a domain specific language for your GCC customizations

Contents

1 Why customize GCC?

2 a glimpse of MELT and GCC internals

3 MELT = a domain specific language for your GCC customizations

B.Starynkevitch Customize GCC with MELT October, 4th, 2013 (OWF) ? 14 / 17

MELT = a domain specific language for your GCC customizations

MELT as a high-level domain specific language

simple, orthogonal, Lisp-like syntax (operator operands ...)
implemented thru the MELT plugin (GPLv3)
values versus stuff :

1 values are first class citizens (lists, closures, boxed trees, . . . boxed integers,
objects with reified classes, etc . . .)

2 stuff is existing GCC data (raw Gimple; raw Trees; . . .)

MELT values are more sexy to use.
garbage collector (MELT generational copying GC for values above existing
GCC mark-and-sweep GC for stuff)

pattern matching
macro system (and run-time evaluation by C++ code generation)
various high-level programming styles: functional, reflective,
object-oriented
translated to C++ by a bootstrapped MELT translator (coded in MELT)
ability to mix C++ code chunks and MELT code

B.Starynkevitch Customize GCC with MELT October, 4th, 2013 (OWF) ? 15 / 17

MELT = a domain specific language for your GCC customizations

Your own MELT extension

coded in MELT (the high-level lispy DSL)
translated to C++ by MELT
understand what to do on GCC internals (Gimples, . . .)
define your MELT mode
usually add your own GCC pass (choose where)
may modify GCC internal representations (Gimple transformation)

Your own applications
API specific coding rules
Industrial API needs specific support in GCC (much like standard C
functions like printf are known by GCC)
navigation (at the Gimple level) or metrics on large software base
specific optimizations

B.Starynkevitch Customize GCC with MELT October, 4th, 2013 (OWF) ? 16 / 17

MELT = a domain specific language for your GCC customizations

Use MELT

Use MELT (free software, GPLv3+) at your place. See gcc-melt.org.
Subscribe to gcc-melt@googlegroups.com if using MELT.

Or subcontract CEA, LIST for your MELT development and commercial
support, or collaborative research projects. Contact
basile.starynkevitch@cea.fr and florent.kirchner@cea.fr [Head of LSL] for
more.

B.Starynkevitch Customize GCC with MELT October, 4th, 2013 (OWF) ? 17 / 17

http://gcc-melt.org/
mailto:gcc-melt@googlegroups.com
mailto:basile.starynkevitch@cea.fr
mailto:florent.kirchner@cea.fr

	Why customize GCC?
	a glimpse of MELT and GCC internals
	MELT = a domain specific language for your GCC customizations

