
GCC internals and MELT extensions
(Tutorial at HiPEAC 2012, january 24th 2012 & LIP6, Paris, may 10th 2012)

Basile STARYNKEVITCH
basile@starynkevitch.net (or basile.starynkevitch@cea.fr)

may 10th 2012 - Univ. Paris 6 -LIP6

These slides are under a Creative Commons Attribution-ShareAlike 3.0 Unported License

creativecommons.org/licenses/by-sa/3.0 and downloadable fromgcc-melt.org
Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 1 / 138

mailto:basile@starynkevitch.net
mailto:basile.starynkevitch@cea.fr
http://creativecommons.org/licenses/by-sa/3.0/
http://gcc-melt.org/

Table of Contents
1 introduction

disclaimer & audience
overview on GCC & MELT
extending GCC
installing and using MELT

2 simple MELT examples
Counting functions in your C code
Showing the GCC pass names
Searching function signature by matching

3 GCC Internals
complexity of GCC
overview inside GCC (cc1)
memory management inside GCC
optimization passes
plugins

4 MELT
why MELT?
handling GCC internal data with MELT
matching GCC data with MELT
current and future work on MELT

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 2 / 138

introduction

Contents

1 introduction
disclaimer & audience
overview on GCC & MELT
extending GCC
installing and using MELT

2 simple MELT examples
Counting functions in your C code
Showing the GCC pass names
Searching function signature by matching

3 GCC Internals
complexity of GCC
overview inside GCC (cc1)
memory management inside GCC
optimization passes
plugins

4 MELT
why MELT?
handling GCC internal data with MELT
matching GCC data with MELT
current and future work on MELT

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 3 / 138

introduction disclaimer & audience

disclaimer: opinions are mine only

Opinions expressed here are only mine!
not of my employer (CEA, LIST)
not of the Gcc community
not of funding agencies (e.g. DGCIS)1

I don’t understand or know all of Gcc;
there are many parts of Gcc I know nothing about.

Beware that I have some strong technical opinions which are not the view
of the majority of contributors to Gcc.

I am not a lawyer ⇒ don’t trust me on licensing issues

(many slides copied from previous talks)

1Work on Melt have been possible thru the GlobalGCC ITEA and OpenGPU FUI collaborative
research projects, with funding from DGCIS

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ♠ 4 / 138

introduction disclaimer & audience

Expected audience
Audience is expected to be familiar with:

GNU/Linux (or other Unix) command line tools like emacs or vim, shell,
Gnu make, Gnu awk, debugger like gdb, svn or git etc...
“daily” usage of gcc (for e.g. C or C++ code); you should know the basic
Gcc options like -c, -Wall, -I, -g, -O2 ...
some experience in building free software
knowing some other language (like Scheme, Python, Ocaml, ...) is helpful but
not required
having a GNU/Linux laptop may help (4Gb RAM, 12Gb disk space);
having gcc-4.7 with plugins enabled also help

You are not expected to be fluent with:
compiler techniques in general (including parsing techniques)
Gcc internals
Melt internals
Lisp languages

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 5 / 138

introduction overview on GCC & MELT

GCC (Gnu Compiler Collection) gcc.gnu.org

perhaps the most used compiler : your phone, camera, dish washer, printer, car,
house, train, airplane, web server, data center, Internet have Gcc compiled code

[cross-] compiles many languages (C, C++, Ada, Fortran, Go, Objective C, Java, ...)
on many systems (GNU/Linux, Hurd, Windows, AIX, ...) for dozens of target
processors (x86, ARM, Sparc, PowerPC, MIPS, C6, SH, VAX, MMIX, ...)

free software (GPLv3+ licensed, FSF copyrighted)

huge (5 or 8? MLOC), legacy (started in 1985) software
still alive and growing (+6% in 2 years)

big contributing community (≈ 400 “maintainers”, mostly full-time professionals)

peer-reviewed development process, but no main architect
⇒ (IMHO) “sloppy” software architecture, not fully modular yet

various coding styles (mostly C & C++ code, with some generated C code)

industrial-quality compiler with powerful optimizations and
diagnostics (lots of tuning parameters and options...)

Current version is gcc-4.7.0 (octobermarch 2012).

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 6 / 138

http://gcc.gnu.org/

introduction overview on GCC & MELT

Gcc & Melt

Generic / Tree

internal representation[s]
Link Time
Optimizations

GIM
PLE

internal representation[s]

bee.c

foo.cc

bar.f90

cat.adb

dog.o

(LTO)

C front-end

C++ front-end

Fortran front-end

Ada front-end

LTO "front-end"

R
TL i.r.

bee.o

foo.o

bar.o

cat.o

dog.o

250 passes in GCC!

yourpass.meltmelt.so yourpass.so

Melt runtime & translator

GCC MELT

warmelt*.so

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 7 / 138

introduction overview on GCC & MELT

cc1 organization

libiberty
utilities

pass
manager

other
utilities

foo.c le
xe

r,
 p

re
p
ro

c

to
ke

n
s

p
a
rs

e
r

g
e
n
e
ri

c
tr

e
e
s

g
im

p
lifi

e
r

g
im

p
le

s

simple
gimple
passes

g
im

p
le

s
..

.
cf

g
,

ss
a
,

..
.

inter-
procedural

gimple
passes

front-end middle-end

R
T
L

g
e
n

e
ra

to
r

RTL

RTL
optim.
passes

RTL
register allocator
instr. scheduler
peephole optim.

RTL passesa
sm

 e
m

it
te

r

RTL
back-end

foo.s

cc1
overview

Gcc is really cc1
3 layers : front-ends→ a
common middle-end→ back-ends

accepting plugins
utilities & (meta-programming) C
code generators
internal representations
(Generic/Tree, Gimple[/SSA], CFG ...)

pass manager
Ggc (= Gcc garbage collection)

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 8 / 138

introduction extending GCC

plugins and extensibility

infrastructure for plugins started in gcc-4.5 (april 2010)

cc1 can dlopen user plugins2

plugin hooks provided:
1 a plugin can add its own new passes (or remove some passes)
2 a plugin can handle events (e.g. Ggc start, pass start, type declaration)
3 a plugin can accept its own #pragma-s or __attribute__ etc...
4 . . .

plugin writers need to understand Gcc internals
plugin may provide customization and application- or project- specific
features:

1 specific warnings (e.g. for untested fopen ...)
2 specific optimizations (e.g. fprintf(stdout, ...) → printf(...)
3 code refactoring, navigation help, metrics
4 etc etc . . .

coding plugins in C may be not cost-effective
higher-level languages are welcome!

2Gcc plugins should be free software, GPLv3 compatible
Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 9 / 138

introduction extending GCC

extending GCC with an existing scripting language

A nearly impossible task, because of impedance mismatch:
rapid evolution of Gcc

using a a scripting language like Ocaml, Python3 or Javascript4 is difficult,
unless focusing on a tiny part of Gcc

mixing several unrelated G-Cs (Ggc and the language one) is error-prone
the Gcc internal API is ill-defined, and has non “functional” sides:

1 extensive use of C macros
2 ad-hoc iterative constructs
3 lots of low-level data structures (possible performance cost to access them)

the Gcc API is huge, and not well defined (a bunch of header files)
needed glue code is big and would change often
Gcc extensions need pattern-matching (on existing Gcc internal
representations like Gimple or Tree-s) and high-level programming
(functional/applicative, object-orientation, reflection).

3See Dave Malcom’s Python plugin
4See TreeHydra in Mozilla

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 10 / 138

introduction extending GCC

extending GCC with MELT

Melt5 is a high-level D omain S pecific L anguage for Gcc extensions:
simple Lisp-like syntax (parenthesis)
dynamically typed values (boxed Gcc data, objects, hash-tables, tuples, closures)

able to handle raw native Gcc low-level stuff and Melt values
garbage-collected
powerful pattern-matching
translated to generated C code
bootstrapped, i.e. the Melt translator is coded in Melt

able to mix C code in MELT code
freely available (as the melt.so meta-plugin), with GPLv3+ license
http://gcc-melt.org/

some projects did use MELT, e.g. Talpo by Pierre Vittet

5Used to be an acronym for Middle-End Lisp Translator
Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 11 / 138

http://gcc-melt.org/

introduction extending GCC

Other approaches

To work on internal source code representations:
text-like approaches awk, grep, sed, perl /
static analyzers:

1 costly commercial tools (CoverityTM, PolyspaceTM, AstréeTM, EclairTM...)
2 some free static analyzers (Frama-C http://frama-c.com/)

but using external tools may disrupt developers’ habits, and there may be
semantic differences with what the compiler does.
some compilers are also extensible e.g. Llvm/Clang
(nobody knows well both clang/llvm and gcc internals)

some integrated development environment (Eclipse) or editors (Emacs)

To improve code generation:
fork a compiler or write your own ,

post-processor on the assembler /

patch the binary /

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 12 / 138

http://frama-c.com/

introduction installing and using MELT

Installing MELT - prerequisites

Since Melt is a C code generator, you need to have all the dependencies for
compiling GCC itself. Having the GCC 4.7 source code is helpful, to look inside.

On Debian (testing or sid) or Ubuntu, install the following packages:

the Gcc 4.7 compiler binary packages:
apt-get install gcc-4.7 g++-4.7 gcc-4.7-multilib

all the dependencies to build Gcc from its source code:
apt-get build-dep gcc-4.7

the Gcc 4.7 plugin development package:
apt-get install gcc-4.7-plugin-dev

the Parma Polyhedra Library 6 is required, with its C interface:
apt-get install libppl-dev libppl-c-dev

Caveat: some distributions don’t have GCC 4.7, and some distributions don’t enable
plugins inside it. If unlucky, you might have to compile GCC 4.7 from its source code.
Building GCC 4.7 from source is tricky, needs care and time.

6the PPL is a prerequisite to GCC. See http://bugseng.com/products/ppl/
Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 13 / 138

http://bugseng.com/products/ppl/

introduction installing and using MELT

Compiling and installing MELT
1 check the configured features of your Gcc with gcc -v and subscribe to
gcc-melt@googlegroups.com

2 retrieve the latest MELT plugin source code:
wget

http://gcc-melt.org/melt-0.9.5-plugin-for-gcc-4.6-or-4.7.tar.gz
3 untar the archive:
tar xzvf melt-0.9.5-plugin-for-gcc-4.6-or-4.7.tar.gz
this will create and fill a melt-0.9.5-plugin-for-gcc-4.6-or-4.7/

directory
4 go into that new directory: cd
melt-0.9.5-plugin-for-gcc-4.6-or-4.7

5 look into the MELT-Plugin-Makefile or Makefile (a symlink).
The default settings are common, but you could want to change some of them in the first
110 lines with an editor. Usually no changes are required.

6 build the Melt [meta-] plugin with Gnu make (don’t do a parallel make)
The build usually takes less than ten minutes.

7 build the installed tree: make install DESTDIR=/tmp/meltinst
8 copy as root the installed tree: sudo cp -v -a /tmp/meltinst/ /

the files are installed under your Gcc plugin directory
Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 14 / 138

mailto:gcc-melt@googlegroups.com
http://gcc-melt.org/melt-0.9.5-plugin-for-gcc-4.6-or-4.7.tar.gz

introduction installing and using MELT

Installed MELT tree

The Melt software is installed under the Gcc plugin directory, as given by
gcc -print-file-name=plugin. (On my Debian/Sid system it is
/usr/lib/gcc/x86_64-linux-gnu/4.6/plugin/):

the Melt meta-plugin melt.so contains the Melt runtime7 (garbage
collector, low level routines).
the include/ directory (which already contained Gcc plugin headers) gets
Melt header files include/melt*.h; in particular the file
include/melt-run.h contains many #include-s, since it is the only header
file #included by Melt generated C code.

the melt-module.mk file is for Gnu make started by the Melt runtime.
the melt-sources/ directory (more than 80 files) is required for operation,
and contains the Melt source code (e.g. xtramelt-ana-base.melt), the corresponding
generated C code (e.g. xtramelt-ana-base*.c), in particular the module descriptive and
timestamp C code (e.g. xtramelt-ana-base+meltdesc.c and
xtramelt-ana-base+melttime.h).

7Some of the runtime routines are Melt generated!
Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 15 / 138

introduction installing and using MELT

Installed MELT tree (2)

the melt-modules/ directory (> 40 files) contains the binary shared
object modules8 dynamically loaded by the Melt runtime.

Each module may come in different flavors (e.g. optimization level by the C
compiler which compiled the generated C code):

optimized : optimized with -O2, no debugging code
quicklybuilt : non-optimized, with debugging code
debugnoline : compiled with -g for gdb debugging, with debugging
code, without #line directives enabled.

The module file path contains the md5sum of the catenation of the C source
code. E.g.
xtramelt-ana-base.5366195dcef243ff011635480216ea65.optimized.so

8These *.so files are dlopen-ed by the melt.so Gcc [meta-] plugin, but follow
different conventions than Gcc plugins

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 16 / 138

introduction installing and using MELT

More on MELT modules
Conceptually, the Melt system is “loading” the generated C source code of
each module, and parses the *+meltdesc.c file when loading a module.

The module directory is conceptually a cache, when some *.so is not found
it is regenerated by forking a make using the melt-module.mk file.

From the user’s point of view, most of the time is spent in compiling the
generated C file.

The Melt installation procedure translates several times the translator’s
warmelt-*.melt files into generated C files.

The melt-sources/ directory also contains the file
melt-sources/melt-default-modules.modlis, containing the list of
default modules to be loaded by Melt.

Melt expects the *.melt source files to be available.
The GCC runtime exception sort-of “requires” Gcc extensions to be free
software. http://www.gnu.org/licenses/gcc-exception.html (you are probably not
allowed to distribute a proprietary binary compiled by an extended Gcc compiler, if the extensions
are not free software)

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 17 / 138

http://www.gnu.org/licenses/gcc-exception.html

introduction installing and using MELT

Using MELT plugin

You need a Gcc 4.7 (or future 4.8, or past 4.6) with the Melt [meta-]plugin
built and installed to use Melt.

You need to give to gcc the program argument -fplugin=melt to ask Gcc
to load the Melt [meta-] plugin. This should be given first, just after gcc.
Required or useful options (specific to Melt):

-fplugin-arg-melt-mode=µ to set the mode to µ; the Melt plugin
don’t do anything without a mode. Melt provides several modes, and your
Melt extensions usually install their own mode[s], which you have to give.
Use the help mode to get a list of them.
-fplugin-arg-melt-workdir=δ to give a working directory δ for Melt
(which will contain generated modules, etc...). The work directory is
usally the same for all the Melt-enhanced Gcc executions inside a project.
-fplugin-arg-melt-arg=α to give an extra argument α for Melt
(usually mode specific)

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 18 / 138

introduction installing and using MELT

Other useful Melt program options

- -fplugin-arg-melt-extra=ξ1:ξ2 ... - a colon separated list of your extra
modules (often a single one) to load.

- -fplugin-arg-melt-debug or -fplugin-arg-melt-debugging=mode or
all to get debugging information, assuming a quicklybuilt or debugnoline
flavor of modules (with debugging code)

-fplugin-arg-melt-debug-skip=σ to skip the first σ debugging messages

-fplugin-arg-melt-print-settings to output the builtin settings in
/bin/sh compatible form

-fplugin-arg-melt-source-path=σ1:σ2 - a colon separated path for Melt
source directories (with *.melt and generated *.c)

-fplugin-arg-melt-module-path=µ1:µ2 - a colon separated path for Melt
module directories (with *.optimized.so and *.quicklybuilt.so)

-fplugin-arg-melt-init=... - colon seperated list of initial modules or @
module lists

etc . . .

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 19 / 138

introduction installing and using MELT

MELT is not a GCC front-end

. . . because a Gcc plugin cannot add a new language.

⇒ to translate a Melt source file, run gcc on e.g. some empty file :
gcc -fplugin=melt -c \

-fplugin-arg-melt-mode=translatequickly \
-fplugin-arg-melt-arg=ex01m-helloworld.melt \
-fplugin-arg-melt-workdir=meltworkdir/ \

empty-file-for-melt.c

Melt is also able to run directly a *.melt file with
-fplugin-arg-melt-mode=runfile: a temporary generated C file is
produced, compiled (with make) into a module, and dynamically loaded with dlopen

(all from the same cc1 process initiated by gcc).

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 20 / 138

introduction installing and using MELT

ex.1 “Hello World” in MELT

;; -*- Lisp -*- (for Emacs). file ex01m-helloworld.melt
;; following comment appearing in the generated C file:
(comment "file ex01-helloworld.melt is in the public domain")
(code_chunk hellochk
#{ printf("Hello by $HELLOCHK from %s at %d\n", __FILE__, __LINE__); }#

)

Lisp-like syntax: (operator operands ...) parenthesis are important
⇒ (f) is never the same as f
Embed C code chunks in your Melt code with macro-strings #{ ... }#

Running it with:

gcc -fplugin=melt -fplugin-arg-melt-mode=nop \
-fplugin-arg-melt-extra=ex01m-helloworld -c empty-file-for-melt.c

Output is Hello by HELLOCHK__1 from ex01m-helloworld.melt at 5

source location in Melt code kept (by emission of #line directives)

unique substitution of state symbol hellochk

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 21 / 138

introduction installing and using MELT

simple advices for MELT

use a lisp mode in your editor for your Melt extensions (in *.melt files)
subscribe to gcc-melt@googlegroups.com

the base name of your Melt extensions should be different of your
compiled C or C++ files (e.g. don’t have a foo.melt to compile your foo.cc)

always provide a work directory (with -fplugin-melt-arg-workdir)

use Melt crude debugging features; avoid gdb on your Melt extensions
be very careful when embedding C code chunks inside Melt code9

possible GNU make rule:
%.quicklybuilt.so: %.melt | empty-file-for-melt.c meltworkdir

gcc -fplugin=melt -fplugin-arg-melt-mode=translatequickly \
-fplugin-arg-melt-arg=$ˆ \
-fplugin-arg-melt-output=$@ \
-fplugin-arg-melt-workdir=meltworkdir/ \
-c empty-file-for-melt.c

use quicklybuilt flavor for development of Melt code (and optimized

for deployment). The bottleneck is the compilation of the generated C code!
9When novice in Melt, avoid memory allocation inside C code chunks.

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 22 / 138

mailto:gcc-melt@googlegroups.com

introduction installing and using MELT

Basic (lisp-like) lexical and syntactic rules of Melt

case is not significant: so iF ≡ IF ≡ if 10 (conventionally prefer lower case)

identifiers or symbols may contain special characters: +ivi is a symbol
comments start with semi-colon ; up to EOL.
a Melt file contains expressions. Some have defining or side- effects.
⇒ Melt has no instructions! Expressions are evaluated in sequence.
all expressions are (operand operators ...)

macro-strings are lexical (transformed to list of strings or names)
#{foo\$BAR#x1}# → ("foo\\" bar "x1")

some syntactic sugar:
’τ ≡ (quote τ) [for quotation of constants]
!ξ ≡ (exclaim ξ) [for content access]
?π ≡ (question π) [for patterns]

“keywords” starting with colon e.g. :else usually not evaluated

NB: “symbol” and “keyword” are lisp terminology

10It is symbol, often understood as a conditional
Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 23 / 138

introduction installing and using MELT

Melt idiosyncrasy : values 6= stuff
1 values (e.g. objects, boxed integers, tuples, lists, closures, boxed stuff)

“dynamically typed” (like in Lisp, Python, Scheme, Ruby, . . .); each value has a
discriminant
first-class citizen: can be argument, reciever, result, fields, closed, . . .
implicit kind of most data
prefer to handle values in your code
efficiently garbage collected by Melt (quick allocation)
’1 ≡ (quote 1) denotes a boxed integer value one (of
discr_constant_integer); () is the nil value

2 stuff = low level data handled inside Gcc (e.g. raw longs, gimples, trees, ...)

statically typed, often with c-type annotations like :long or :tree
restricted usage in Melt (e.g. a Melt function cannot give stuff as it primary result, only
as secondary ones)
directly translated to C counterpart
some stuff is garbage collected by Gcc only (but not all, e.g. :cstring for constant
character strings)
0 denotes a stuff of c-type :long⇒ so 0 6≡ ’0 unlike in Lisp-s
sadly unavoidable, hence sometimes useful
avoid stuff when you can

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 24 / 138

introduction installing and using MELT

Important stuff (e.g. internal Gcc representations)

Thru their Melt c-type “keywords”

:long for raw integer long numbers.
Not sufficient for target integers. See HOST_WIDE_INT inside Gcc

:cstring for const char* string constants outside of heap (only literal strings
like "message").

:tree for Gcc tree-s, a (pointer like) opaque type for abstract syntax tree (e.g.
declarations) inside Gcc.

:gimple for Gcc elementary Gimple instructions (3-address like). Their operands
are :tree-s

:gimple_seq for Gcc sequence of Gimple-s

:basic_block for Gcc basic blocks containing Gimple sequences

:edge for control flow graph edges between basic blocks

etc etc. Adding a new c-type is fairly easy (require full Melt regeneration).

NB: :value is the c-type for values

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 25 / 138

simple MELT examples

Contents

1 introduction
disclaimer & audience
overview on GCC & MELT
extending GCC
installing and using MELT

2 simple MELT examples
Counting functions in your C code
Showing the GCC pass names
Searching function signature by matching

3 GCC Internals
complexity of GCC
overview inside GCC (cc1)
memory management inside GCC
optimization passes
plugins

4 MELT
why MELT?
handling GCC internal data with MELT
matching GCC data with MELT
current and future work on MELT

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 26 / 138

simple MELT examples Counting functions in your C code

ex.2 Counting functions in your C or C++ code

We want to count the (C, C++, ...) functions as compiled by your extended
Gcc.

1 define the counter object value
2 define the counting function (incrementing that counter value)
3 define a Melt mode gluing it into the Gcc pass machinery
4 illustrate some basic Melt constructs

(most defining constructs start with def... like defun or definstance)

5 understanding the Gcc [powerful] “mess”

NB: Our examples are available at
git://github.com/bstarynk/melt-examples.git
(public domain or LGPLv3)

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 27 / 138

simple MELT examples Counting functions in your C code

defining the counter object

We define an instance of class_container, we name it fun_counter

Example

(definstance fun_counter class_container
:container_value ’0)

The symbol definstance is for static definitions of object instances

Notice the unique field container_value initialized to a boxed integer
value ’0 (omitting the quote gives an error)

To access the contained value 11

(get_field :container_value fun_counter) or simply !fun_counter

11It is a safe access: won’t crash if fun_counter was not of class_container

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 28 / 138

simple MELT examples Counting functions in your C code

incrementing the counter value

Our incrementing function has no arguments and gives no result (so returns nil)

Example

(defun countfun_pass_exec ()
(set_content fun_counter (+ivi !fun_counter 1))
(debug "incremented fun_counter=" fun_counter))

formal argument list () is empty

function body has two expressions (the last can give the result)

use debug to display debug messages (when -fplugin-arg-melt-debug given)

+ivi [add integer value with integer stuff] is a primitive operation

(set_content fun_counter ξ)
≡ (put_fields fun_content :container_value ξ)

is [safely] updating an object value

Our function is called countfun_pass_exec because it is related to Gcc
pass execution...

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 29 / 138

simple MELT examples Counting functions in your C code

let there be locally scoped variables ...

Later we need to inform the user. We need the number stuff inside the
counter object, but it is only of local interest. Use the let construct, with a
sequence of bindings and a body of sub-expressions.

(let ((:long nbcount (get_int !fun_counter))
)

(code_chunk
informusercount
#{ /*$INFORMUSERCOUNT*/ inform(UNKNOWN_LOCATION,

"MELT counted %ld functions / $INFORMUSERCOUNT",
$NBCOUNT) ;

}#))

NB: outside of that let the nbcount variable is unknown (unbound)
there is a lexical scope for variables.

Of course the above let is inside something, an anonymous function...

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 30 / 138

simple MELT examples Counting functions in your C code

anonymous functions at last

The lambda syntax introduces an anonymous function. Here we register it to
be called at exit (in a first to last order).

(at_exit_first
(lambda ()
;; same as previous slide:
(let ((:long nbcount (get_int !fun_counter)))
(code_chunk informusercount
#{ /*$INFORMUSERCOUNT*/ inform(UNKNOWN_LOCATION,

"MELT counted %ld functions / $INFORMUSERCOUNT",
$NBCOUNT) ;

}#))

))

The fun_counter is closed inside the lambda (only values, not stuff, can be
closed). So lambda expressions evaluate to closures (= code + closed values).

Functional values (notably with anonymous lambda) are very powerful: put
them inside objects, tables, containers, tuples . . . and apply them much later!

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 31 / 138

simple MELT examples Counting functions in your C code

Making a pass on command

(defun funcounter_docmd (cmd moduldata)
(debug "funcounter_docmd cmd=" cmd)
(let ((countfunpass

(instance class_gcc_gimple_pass
:named_name ’"countfun_pass"
:gccpass_exec countfun_pass_exec))

)
(install_melt_gcc_pass countfunpass "after" "cfg" 0)
(debug "countfunpass=" countfunpass)
dinform at exit, as beforec
(debug "funcounter mode success cmd=" cmd)
(return :true)
))

instance dynamically creates a new object instance value
a Gcc Gimple pass is created and installed after an existing one named "cfg"
(control flow graph builder)

the funcounter_docmd function (for our mode) should return non-nil to
succeed. We use the return syntax for clarity12

12Since the (return :true) expression is the last of the function’s body, it already gives the
returned value and could be just :true

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 32 / 138

simple MELT examples Counting functions in your C code

defining and installing our mode

(definstance funcounter_mode class_melt_mode
:named_name ’"funcounter"
:meltmode_help ’"install a pass to count functions"
:meltmode_fun funcounter_docmd)

(install_melt_mode funcounter_mode)
;; eof ex02m-countfun.melt

Then we can use our extension:

gcc -fplugin=melt -O -fplugin-arg-melt-mode=funcounter \
-fplugin-arg-melt-workdir=meltworkdir \
-fplugin-arg-melt-extra=ex02m-countfun -c ex02c-sample.c

cc1: note: MELT counted 3 functions / INFORMUSERCOUNT__1

NB: we could have translated our Melt code and used it in the same gcc with
-fplugin-arg-melt-mode=runfile,funcounter

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 33 / 138

simple MELT examples Showing the GCC pass names

ex.3 learn more about passes, using a MELT hook

;; file ex03m-passhook.melt
(defun passhook (passname :long passnum)

(debug "passhook passname=" passname " passnum=" passnum)
(shortbacktrace_dbg "passhook" 10)
(code_chunk passhookchk

#{/*$PASSHOOKCHK*/ printf("passhook %s #%d\n",
melt_string_str ($PASSNAME),
(int) $PASSNUM);}#))

(register_pass_execution_hook passhook)

example of formal arguments list with raw stuff (here passnum)

all Melt functions have, if any, their first argument a value
shortbacktrace_dbg to print the call stack (for debugging purposes)

careful use of melt_string_str C function
the :cstring c-type is not garbage collected, and is not compatible with Melt boxed strings

use register_pass_execution_hook (often inside a mode) to register
a Melt hook called for each executed pass.

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 34 / 138

simple MELT examples Showing the GCC pass names

showing the passes when our Gcc runs

With a tiny example file ex03c-twofun.c

int two = 2;
int first(int x)
{
return x*two;

}
int second(int y, int z)
{
return y+z+two;

}
/* eof ex03c-twofun.c */

compiled by

gcc -fplugin=melt -O -fplugin-arg-melt-mode=nop \
-fplugin-arg-melt-workdir=meltworkdir \
-fplugin-arg-melt-extra=ex03m-passhook -c ex03c-twofun.c

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 35 / 138

simple MELT examples Showing the GCC pass names

GCC runs many (290) passes!

passhook *warn_unused_result #-1
passhook omplower #13
passhook lower #14
passhook eh #16
passhook cfg #17
passhook *warn_function_return #-1
passhook *build_cgraph_edges #-1
passhook *warn_unused_result #-1
passhook omplower #13
passhook lower #14
passhook eh #16
passhook cfg #17
passhook *warn_function_return #-1
passhook *build_cgraph_edges #-1
passhook *free_lang_data #-1
passhook visibility #18
passhook early_local_cleanups #19
passhook *free_cfg_annotations #-1
passhook *init_datastructures #-1
passhook *referenced_vars #-1
passhook ssa #21
passhook veclower #22
passhook *rebuild_cgraph_edges #-1
passhook inline_param #23
passhook einline #24
passhook early_optimizations #25
passhook *remove_cgraph_callee_edges #-1

passhook copyrename #26
passhook ccp #27
passhook forwprop #28
passhook ealias #29
passhook esra #30
passhook copyprop #31
passhook mergephi #32
passhook cddce #33
passhook profile #38
passhook local-pure-const #39
passhook release_ssa #41
passhook *rebuild_cgraph_edges #-1
passhook inline_param #42
passhook *free_cfg_annotations #-1
passhook *init_datastructures #-1
passhook *referenced_vars #-1
passhook ssa #21
passhook veclower #22
passhook *rebuild_cgraph_edges #-1
passhook inline_param #23
passhook einline #24
passhook early_optimizations #25
passhook *remove_cgraph_callee_edges #-1
passhook copyrename #26
passhook ccp #27
passhook forwprop #28
etc etc . . .

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 36 / 138

simple MELT examples Searching function signature by matching

ex.4 Searching function by matching

Goal:
Find all (definitions of) functions with

1 their name starting with bee
2 all the formal arguments being integral types (e.g. int or long, but not pointers

or structures)

Showing:
usage of “ad-hoc” iterative constructs (specific to Gcc)
filtering thru pattern matching
emission of informational messages to the user

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 37 / 138

simple MELT examples Searching function signature by matching

using interative constructs in Melt

Assume we have the :tree of some function declaration in cfundecl. To
iterate on all the formal parameters of that declared function, we code:

(each_param_in_fundecl
(cfundecl)
(:tree argdtree)
ddo something with argdtree (next slide)c

)

We give a sequence of input arguments - here (cfundecl) - and
a sequence of local formals - here (:tree argdtree) - to
the c-iterator each_param_in_fundecl.

A c-iterator is defined with macro-strings to expand it into C. Melt has a lot of
iterative constructs, because Gcc provides many of them.

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 38 / 138

simple MELT examples Searching function signature by matching

filtering trees with pattern-matching

We look for tree (in argdtree) which declares a parameter, whose type is an
integer type, using pattern matching with several matching clauses:

(match argtree
(?(tree_parm_decl

?(tree_integer_type ?typename ?_ ?_ ?_)
?paramname)

(debug "found integral parameter typename=" typename
" of paramname=" paramname)

(void) ;; a "no-op" of c-type :void
)
(?_
(setq ok 0)) ;; assign to ok the raw long stuff 0

)

A matching clause starts with a pattern, then a body of sub-expressions. A
pattern is a syntactic category (not an expression). It is often nested, with
sub-patterns. Pattern variables (e.g. ?paramname) are bound only in their
matching clause. ?_ is the joker or wildcard pattern.

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 39 / 138

simple MELT examples Searching function signature by matching

matching the current function’s declaration

;; our execute function in pass
(defun searchfun_pass_exec ()
(with_cfun_decl ()
(:tree cfundecl)
(debug "searchfun_exec cfundecl=" cfundecl)
(match cfundecl

(?(tree_function_decl_named
?(cstring_prefixed "bee") ?_)
(let ((:long ok 1)

)
dcheck that cfundecl has only integral parameters with each_param_in_fundecl ...c
(if ok

(inform_at_tree cfundecl "found nice beefy function"))))
(?_

(void)))

with_cfun_decl is also an interator. We display the informative message
only when ok has not been cleared with setq.

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 40 / 138

GCC Internals

Contents

1 introduction
disclaimer & audience
overview on GCC & MELT
extending GCC
installing and using MELT

2 simple MELT examples
Counting functions in your C code
Showing the GCC pass names
Searching function signature by matching

3 GCC Internals
complexity of GCC
overview inside GCC (cc1)
memory management inside GCC
optimization passes
plugins

4 MELT
why MELT?
handling GCC internal data with MELT
matching GCC data with MELT
current and future work on MELT

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 41 / 138

GCC Internals complexity of GCC

Code size of GCC

Released gcc-4.6.0.tar.gz (on march 25th, 2011) is 92206220 bytes (90Mb).
The gunzip-ed tar-ball gcc-4.6.0.tar is 405Mb.
Previous gcc-4.5.0.tar.gz (released on april 14th, 2010)13 was 82Mb.

gcc-4.6.0/ measured with D.Wheeler’s SLOCcount:
4,296,480 Physical Source Lines of Code

Measured with ohcount -s, in total:
57360 source files

5477333 source code lines

1689316 source comment lines

1204008 source blank lines

8370657 source total lines

13There have been minor releases up to gcc-4.5.3 in april 29th, 2011.

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 42 / 138

GCC Internals complexity of GCC

Why is GCC so complex?

it accepts many source languages (C, C++, Ada, Fortran, Go, Objective-C, Java,
. . .), so has many front-ends
it targets several dozens of processors thru many back-ends

common processors like x86 (ia-32), x86-64 (AMD64), ARM, PowerPC (32 &
64 bits), Sparc (32 & 64 bits) . . .
less common processors: ia-64 (Itanium), IBM Z/390 mainframes, PA-RISC,
ETRAX CRIS, MC68000 & DragonBall & ColdFire, . . .
extinct or virtual processors: PDP-11, VAX, MMIX, . . .
processors supported by external variants: M6809, PIC, Z8000 . . .

it runs on many operating systems, perhaps with cross-compilation
it performs many optimizations (mostly target neutral!)
because today’s processors are complex, and far from C
so Gcc has an extensive test-suite

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 43 / 138

GCC Internals complexity of GCC

Why GCC needs to be complex?

See the Essential Abstractions in GCC tutorial at CGO2011
http://www.cse.iitb.ac.in/grc/index.php?page=gcc-tut by
Uday Khedker (India Institute of Technology, Bombay)

Because Gcc is not only the Gnu Compiler Collection, but is now a
compilation framework so becomes the Great Compiler Challenge
Since current processors are big chips (109 transistors), their
micro-architecture is complex (and GCC has to work a lot for them):

GHz clock rate
many functional units working in parallel
massive L1, L2, L3 caches (access to RAM is very slow, ≈ 1000 cycles)

out-of-order execution
branch prediction

Today’s x86 processors (AMD Bulldozer, Intel Sandy Bridge) are not like i486 (1990, at
50MHz) running much faster, even if they nearly share the same ia-32 instruction set
(in 32 bits mode). Gcc needs to optimize differently for AMD than for Intel!

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 44 / 138

http://www.cse.iitb.ac.in/grc/index.php?page=gcc-tut

GCC Internals complexity of GCC

Why is understanding GCC difficult?

“Gcc is not a compiler but a compiler generation framework”: (U.Khedker)

a lot of C code inside Gcc is generated at building time.
Gcc has many ad-hoc code generators
(some are simple awk scripts, others are big tools coded in many KLOC-s of C)
Gcc has several ad-hoc formalisms (perhaps call them domain specific languages)

Gcc is growing gradually and does have some legacy (but powerful) code
Gcc has no single architect (“benevolent dictator”):
(no “Linus Torvalds” equivalent for Gcc)

Gcc source code is heterogenous:
coded in various programming languages (C, C++, Ada . . .)
coded at very different times, by many people (with various levels of expertise).
no unified naming conventions
(my opinion only:) still weak infrastructure (but powerful)
not enough common habits or rules about: memory management, pass
roles, debug help, comments, dump files . . .

Gcc code is sometimes quite messy (e.g. compared to Gtk).

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 45 / 138

GCC Internals complexity of GCC

What you should read on GCC

You should (find lots of resources on the Web, then) read:

the Gcc user documentation
http://gcc.gnu.org/onlinedocs/gcc/, giving:

how to invoke gcc (all the obscure optimization flags)
various language (C, C++) extensions, including attributes and builtins.
how to contribute to Gcc and to report bugs

the Gcc internal documentation
http://gcc.gnu.org/onlinedocs/gccint/, explaining:

the overall structure of Gcc and its pass management
major (but not all) internal representations (notably Tree, Gimple, RTL . . .).
memory management, GTY annotations, gengtype generator
interface available to plugins
machine and target descriptions
LTO internals

the source code, mostly header files *.h, definition files *.def, option
files *.opt. Don’t be lost in Gcc monster source code.14

14You probably should avoid reading many *.c code files at first.

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 46 / 138

http://gcc.gnu.org/onlinedocs/gcc/
http://gcc.gnu.org/onlinedocs/gccint/

GCC Internals overview inside GCC (cc1)

utilities and infrastructure
gcc is only a driver (file gcc/gcc.c). Most things happen in cc1. See file
gcc/toplev.c for the toplev_main function starting cc1 and others.

There are many infrastructures and utilities in Gcc

1 libiberty/ to abstract system dependencies
2 the Gcc Garbage Collector i.e. Ggc:

a naive precise mark-and sweep garbage collector
sadly, not always used (many routines handle data manually, with explicit free)
runs only between passes, so used for data shared between passes
don’t handle any local variables /
about 1800 struct inside Gcc are annotated with GTY annotations.
the gengtype generator produces marking routines in C out of GTY

I love the idea of a garbage collector (but others don’t).
I think Ggc should be better, and be more used.

3 diagnostic utilities
4 preprocessor library libcpp/
5 many hooks (e.g. language hooks to factorize code between C, C++, ObjectiveC)

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 47 / 138

GCC Internals overview inside GCC (cc1)

cc1 front-end

The front-end (see function compile_file in gcc/toplev.c) is reading the
input files of a translation unit (e.g. a foo.c file and all #include-d *.h files).

language specific hooks are given thru lang_hooks global variable, in
$GCCSOURCE/gcc/langhooks.h

$GCCSOURCE/libcpp/ is a common library (for C, C++, Objective C...) for
lexing and preprocessing.
C-like front-end processing happens under $GCCSOURCE/gcc/c-family/
parsing happens in $GCCSOURCE/gcc/c-parser.c and
$GCCSOURCE/gcc/c-decl.c, using manual recursive descent
parsing techniques15 to help syntax error diagnostics.
abstract syntax Tree-s [AST] (and Generic to several front-ends)

In gcc-4.6 plugins cannot enhance the parsed language
(except thru events for #pragma-s or __attribute__ etc . . .)

15Gcc don’t use LALR parser generators like yacc or bison for C.
Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 48 / 138

GCC Internals overview inside GCC (cc1)

GCC middle-end

The middle-end is the most important16 (and bigger) part of Gcc

it is mostly independent of both the source language and of the target
machine (of course, sizeof(int) matters in it)

it factorizes all the optimizations reusable for various sources
languages or target systems
it processes (i.e. transforms and enhances) several middle-end internal
(and interleaved) representations, notably

1 declarations and operands represented by Tree-s
2 Gimple representations (“3 address-like” instructions)
3 Control Flow Graph informations (Edges, Basic Blocks, ...)
4 Data dependencies
5 Static Single Assignment (SSA) variant of Gimple
6 many others

I [Basile] am more familiar with the middle-end than with front-ends or back-ends.

16Important to me, since I am a middle-end guy!

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 49 / 138

GCC Internals overview inside GCC (cc1)

Middle End and Link Time Optimization

With LTO, the middle-end representations are both input and output.

LTO enables optimization across several compilation units, e.g. inlining of
a function defined in foo.cc and called in bar.c
(LTO existed in old proprietary compilers, and in LLVM)

when compiling source translation units in LTO mode, the generated
object *.o file contains both:

(as always) binary code, relocation directives (to the linker), debug
information (for gdb)
(for LTO) summaries, a simplified serialized form of middle-end
representations

when “linking” these object files in LTO mode, lto1 is a “front-end” to this
middle-end data contained in *.o files. The program lto1 is started by
the gcc driver (like cc1plus . . .)
in WHOPR mode (whole program optimization), LTO is split in three stages
(LGEN = local generation, in parallel; sequential WPA = whole program
analysis; LTRANS = local transformation, in parallel).

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 50 / 138

GCC Internals overview inside GCC (cc1)

GCC back-ends

The back-end17 is the last layer of Gcc (specific to the target machine):

it contains all optimizations (etc . . .) particular to its target system
(notably peepwhole target-specific optimizations).
it schedules (machine) instructions
it allocates registers18

it emits assembler code (and follows target system conventions)

it transforms gimple (given by middle-end) into back-end representations,
notably RTL (register transfer language)
it optimizes the RTL representations
some of the back-end C code is generated by machine descriptions
*.md files.

/ I [Basile] don’t know much about back-ends
17A given cc1 or lto1 has usually one back-end (except multilib ie -m32 vs -m64 on

x86-64). But Gcc source release has many back-ends!
18Register allocation is a very hard art. It has been rewritten many times in Gcc.

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 51 / 138

GCC Internals overview inside GCC (cc1)

“meta-programming” C code generators in GCC

Gcc has several internal C code generators (built in $GCCBUILD/gcc/build/):

gengtype for Ggc, generating marking code from GTY annotations
genhooks for target hooks, generating target-hooks-def.h from
target.def

genattrtab, genattr, gencodes, genconditions, gencondmd,
genconstants, genemit, genenums, genextract, genflags,
genopinit, genoutput, genpreds, to generate machine attributes
and code from machine description *.md files.
genautomata to generate pipeline hazard automaton for instruction
scheduling from *.md

genpeep to generate peephole optimizations from *.md

genrecog to generate code recognizing RTL from *.md

etc . . .

(genautomata, gengtype, genattrtab are quite big generators)

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 52 / 138

GCC Internals overview inside GCC (cc1)

GCC pass manager and passes

The pass manager is coded in $GCCSOURCE/gcc/passes.c and
tree-optimize.c with tree-pass.h

There are many (≈ 250) passes in Gcc:
The set of executed passes depend upon optimization flags (-O1 vs -O3 ...)
and of the translation unit.

middle-end passes process Gimple (and other representations)
simple Gimple passes handle Gimple code one function at a time.
simple and full IPA Gimple passes do Inter-Procedural Analysis
optimizations.

back-end passes handle RTL etc . . .

Passes are organized in a tree. A pass may have sub-passes, and could be
run several times.

Both middle-end and back-end passes go into libbackend.a!

Plugins can add (or remove, or monitor) passes.

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 53 / 138

GCC Internals memory management inside GCC

Garbage Collection inside GCC

Ggc is implemented in $GCCSOURCE/gcc/ggc*.[ch]
19 and thru the

gengtype generator $GCCSOURCE/gcc/gengtype*.[chl].

the GTY annotation (on struct and global or static data) is used to
“declare” Ggc handled data and types.
gengtype generates marking and allocating routines in gt-*.h and
gtyp*.[ch] files (in $GCCBUILD/gcc/)

ggc_collect (); calls Ggc; it is mostly called by the pass manager.

/ local pointers (variables inside Gcc functions) are not preserved by Ggc
so ggc_collect can’t be called20 everywhere!
⇒ passes have to copy (pointers to their data) to static GTY-ed variables
so Ggc is unfortunately not systematically used
(often data local to a pass is manually managed & explicitly freed)

19ggc-zone.c is often unused.
20Be very careful if you need to call ggc_collect yourself inside your pass!

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 54 / 138

GCC Internals memory management inside GCC

Why real compilers need garbage collection?

compilers have complex internal representations (≈ 1800 GTY-ed types!)
compilers are become very big and complex programs
it is difficult to decide when a compiler data can be (manually) freed
circular data structures (e.g. back-pointers from Gimple to containing Basic Blocks)
are common inside compilers; compiler data are not (only) tree-like.
liveness of a data is a global (non-modular) property!
garbage collection techniques are mature
(garbage collection is a global trait in a program)

memory is quite cheap

In my (strong) opinion, Ggc is not very good21 -but cannot and shouldn’t be
avoided-, and should systematically be used, so improved.
Even today, some people manually sadly manage their data in their pass.

21Chicken & egg issue here: Ggc not good enough ⇒ not very used ⇒ not improved!

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 55 / 138

GCC Internals memory management inside GCC

using Ggc in your C code for Gcc

Annotate your struct declarations with GTY in your C code:

// from $GCCSOURCE/gcc/tree.h
struct GTY ((chain_next ("%h.next"), chain_prev ("%h.prev")))

tree_statement_list_node {
struct tree_statement_list_node *prev;
struct tree_statement_list_node *next;
tree stmt; // The tree-s are GTY-ed pointers

};

struct GTY(()) tree_statement_list {
struct tree_typed typed;
struct tree_statement_list_node *head;
struct tree_statement_list_node *tail;

};

Likewise for global or static variables:

extern GTY(()) VEC(alias_pair,gc) * alias_pairs;

Notice the poor man’s vector “template” thru the VEC “mega”-macro (from

$GCCSOURCE/gcc/vec.h) known by gengtype

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 56 / 138

GCC Internals memory management inside GCC

GTY annotations

http://gcc.gnu.org/onlinedocs/gccint/Type-Information.html

Often empty, these annotations help to generate good marking routines:

skip to ignore a field
list chaining with chain_next and chain_previous

[variable-] array length with length and variable_size

discriminated unions with descr and tag . . .
poor man’s genericity with param2_is or use_params etc . . .
marking hook routine with mark_hook

etc . . .

From tree.h gengtype is generating gt-tree.h which is #include-d
from tree.c

Pre Compiled Headers (PCH)22 also use gengtype & GTY.

22PCH is a feature which might be replaced by “pre-parsed headers” in the future.

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 57 / 138

http://gcc.gnu.org/onlinedocs/gccint/Type-Information.html

GCC Internals memory management inside GCC

Example of gengtype generated code
Marking routine:
// in $GCCBUILD/gcc/gtype-desc.c
void gt_ggc_mx_tree_statement_list_node (void *x_p) {

struct tree_statement_list_node * x = (struct tree_statement_list_node *)x_p;
struct tree_statement_list_node * xlimit = x;
while (ggc_test_and_set_mark (xlimit))
xlimit = ((*xlimit).next);

if (x != xlimit)
for (;;) {

struct tree_statement_list_node * const xprev = ((*x).prev);
if (xprev == NULL) break;
x = xprev;
(void) ggc_test_and_set_mark (xprev);

}
while (x != xlimit) {

gt_ggc_m_24tree_statement_list_node ((*x).prev);
gt_ggc_m_24tree_statement_list_node ((*x).next);
gt_ggc_m_9tree_node ((*x).stmt);
x = ((*x).next);

} }

Allocators:
// in $GCCBUILD/gcc/gtype-desc.h
#define ggc_alloc_tree_statement_list() \

((struct tree_statement_list *)(ggc_internal_alloc_stat (sizeof (struct tree_statement_list) MEM_STAT_INFO)))
#define ggc_alloc_cleared_tree_statement_list() \

((struct tree_statement_list *)(ggc_internal_cleared_alloc_stat (sizeof (struct tree_statement_list) MEM_STAT_INFO)))
#define ggc_alloc_vec_tree_statement_list(n) \

((struct tree_statement_list *)(ggc_internal_vec_alloc_stat (sizeof (struct tree_statement_list), n MEM_STAT_INFO)))

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ♠ 58 / 138

GCC Internals memory management inside GCC

Ggc work

The Ggc garbage collector is a mark and sweep precise collector, so:

each Ggc-aware memory zone has some kind of mark
first Ggc clears all the marks
then Ggc marks all the [global or static] roots23, and “recursively” marks all
the (still unmarked) data accessible from them, using routines generated by
gengtype

at last Ggc frees all the unmarked memory zones

Complexity of Ggc is ≈ O(m) where m is the total memory size.

When not much memory has been allocated, ggc_collect returns
immediately and don’t really run Ggc24

Similar trick for pre-compiled headers: compiling a *.h file means parsing it
and persisting all the roots (& data accessible from them) into a compiled header.

23That is, extern or static GTY -ed variables.
24Thanks to ggc_force_collect internal flag.

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 59 / 138

GCC Internals memory management inside GCC

allocating GTY-ed data in your C code

gengtype also generates allocating macros named ggc_alloc*. Use them
like you would use malloc . . .

// from function tsi_link_before in $GCCSOURCE/gcc/tree-iterator.c
struct tree_statement_list_node *head, *tail;
// ...
{

head = ggc_alloc_tree_statement_list_node ();
head->prev = NULL; head->next = NULL; head->stmt = t;
tail = head;

}

Of course, , you don’t need to free that memory: Ggc will do it for you.
GTY-ed allocation never starts automatically a Ggc collection25, and has some little
cost. Big data can be GTY-allocated. Variable-sized data allocation macros get as
argument the total size (in bytes) to be allocated.

Often we wrap the allocation inside small inlined “constructor”-like functions.
25Like almost every other garbage collector would do; Ggc can’t behave like that

because it ignores local pointers, but most other GCs handle them!

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 60 / 138

GCC Internals optimization passes

Pass descriptors
Middle-end and back-end passes are described in structures defined in
$GCCSOURCE/gcc/tree-pass.h. They all are opt_pass-es with:

some type, either GIMPLE_PASS, SIMPLE_IPA_PASS, IPA_PASS, or RTL_PASS

some human readable name. If it starts with * no dump can happen.
an optional gate function “hook”, deciding if the pass (and its optional
sub-passes) should run.
an execute function “hook”, doing the actual work of the pass.
required, provided, or destroyed properties of the pass.
“to do” flags
other fields used by the pass manager to organize them.
timing identifier tv_id (for -freport-time program option).

Full IPA passes have more descriptive fields (related to LTO serialization).

Most of file tree-pass.h declare pass descriptors, e.g.:
extern struct gimple_opt_pass pass_early_ipa_sra;
extern struct gimple_opt_pass pass_tail_recursion;
extern struct gimple_opt_pass pass_tail_calls;

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 61 / 138

GCC Internals optimization passes

A pass descriptor [control flow graph building]

In file $GCCSOURCE/gcc/tree-cfg.c

struct gimple_opt_pass pass_build_cfg = { {
GIMPLE_PASS,
"cfg", /* name */
NULL, /* gate */
execute_build_cfg, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_TREE_CFG, /* tv_id */
PROP_gimple_leh, /* properties_required */
PROP_cfg, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_verify_stmts | TODO_cleanup_cfg
| TODO_dump_func /* todo_flags_finish */
} };

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 62 / 138

GCC Internals optimization passes

Another pass descriptor [tail calls processing]

struct gimple_opt_pass pass_tail_calls = { {
GIMPLE_PASS,
"tailc", /* name */
gate_tail_calls, /* gate */
execute_tail_calls, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_NONE, /* tv_id */
PROP_cfg | PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */ } };

This file $GCCSOURCES/gcc/tree-tailcall.c contains two related
passes, for tail recursion elimination.
Notice that the human name (here "tailc") is unfortunately unlike the C
identifier pass_tail_calls (so finding a pass by its name can be boring).

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 63 / 138

GCC Internals optimization passes

IPA pass descriptor: interprocedural constant propagation

struct ipa_opt_pass_d pass_ipa_cp = { { // in file $GCCSOURCE/gcc/ipa-cp.c
IPA_PASS,
"cp", /* name */
cgraph_gate_cp, /* gate */
ipcp_driver, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_IPA_CONSTANT_PROP, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_cgraph | TODO_dump_func |
TODO_remove_functions | TODO_ggc_collect /* todo_flags_finish */
},
ipcp_generate_summary, /* generate_summary routine for LTO*/
ipcp_write_summary, /* write_summary routine for LTO*/
ipcp_read_summary, /* read_summary routine for LTO*/
NULL, /* write_optimization_summary */
NULL, /* read_optimization_summary */
NULL, /* stmt_fixup */
0, /* TODOs */
NULL, /* function_transform */
NULL, /* variable_transform */
};

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 64 / 138

GCC Internals optimization passes

RTL pass descriptor: dead-store elimination

struct rtl_opt_pass pass_rtl_dse1 = { { // in file $GCCSOURCE/gcc/dse.c
RTL_PASS,
"dse1", /* name */
gate_dse1, /* gate */
rest_of_handle_dse, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_DSE1, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func |
TODO_df_finish | TODO_verify_rtl_sharing |
TODO_ggc_collect /* todo_flags_finish */
} };

There is a similar pass_rtl_dse2 in the same file.

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 65 / 138

GCC Internals optimization passes

How the pass manager is activated?

Language specific lang_hooks.parse_file (e.g. c_parse_file in
$GCCSOURCES/gcc/c-parser.c for cc1) is called from compile_file in
$GCCSOURCES/gcc/toplev.c.
When a C function has been entirely parsed by the front-end,
finish_function (from $GCCSOURCE/gcc/c-decl.c) is called. Then

1 c_genericize in $GCCSOURCE/gcc/c-family/c-gimplify.c is called.
The C-specific abstract syntax tree (AST) is transformed in Generic
representations (common to several languages);

2 several functions from $GCCSOURCE/gcc/gimplify.c are called:
gimplify_function_tree→ gimplify_body→ gimplify_stmt
→ gimplify_expr

3 some language-specific gimplification happens thru
lang_hooks.gimplify_expr, e.g. c_gimplify_expr for cc1.

4 etc . . .
Then tree_rest_of_compilation (in file $GCCSOURCE/gcc/tree-optimize.c)
is called.

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 66 / 138

GCC Internals optimization passes

Pass registration

Passes are registered within the pass manager. Plugins indirectly call
register_pass thru the PLUGIN_PASS_MANAGER_SETUP event.

Most Gcc core passes are often statically registered, thru lot of code in
init_optimization_passes like

struct opt_pass **p;
#define NEXT_PASS(PASS) (p = next_pass_1 (p, &((PASS).pass)))
p = &all_lowering_passes;
NEXT_PASS (pass_warn_unused_result);
NEXT_PASS (pass_diagnose_omp_blocks); NEXT_PASS (pass_mudflap_1);
NEXT_PASS (pass_lower_omp); NEXT_PASS (pass_lower_cf);
NEXT_PASS (pass_refactor_eh); NEXT_PASS (pass_lower_eh);
NEXT_PASS (pass_build_cfg); NEXT_PASS (pass_warn_function_return);

// etc ...

next_pass_1 calls make_pass_instance which clones a pass. Passes
may be dynamically duplicated.

Passes are organized in a hierarchical tree of passes. Some passes have
sub-passes (which run only if the super-pass gate function succeeded).

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 67 / 138

GCC Internals optimization passes

Running the pass manager

Function tree_rest_of_compilation calls
execute_all_ipa_transforms and most importantly
execute_pass_list (all_passes) (file $GCCSOURCE/gcc/passes.c)
The role of the pass manager is to run passes using execute_pass_list
thru execute_one_pass.
Some passes have sub-passes⇒ execute_pass_list is recursive.
It has specific variants:
(e.g. execute_ipa_pass_list or execute_all_ipa_transforms, etc...)
Each pass has an execute function, returning a set of to do flags, merged
with the todo_finish flags in the pass.

To Do actions are processed by execute_todo, with code like

if (flags & TODO_ggc_collect)
ggc_collect ();

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 68 / 138

GCC Internals optimization passes

Issues when defining your pass

, The easy parts:
define what your pass should do
specify your gate function, if relevant
specify your exec function
define the properties and to-do flags

/ The difficult items:
position your new pass within the existing passes
⇒ understand after which pass should you add yours!
understand what internal representations are really available
understand what next passes expect!
⇒ understand which passes are running?

I [Basile] also have these difficulties !!

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 69 / 138

GCC Internals optimization passes

pass dump

Usage: pass -fdump-*-* program flags26 to gcc

Each pass can dump information into textual files.
⇒ your new passes should provide dumps.27

⇒ So you could get hundreds of dump files:
hello.c→ hello.c.000i.cgraphhello.c.224t.statistics
(but the numbering don’t means much /, they are not chronological!)

try -fdump-tree-all -fdump-ipa-all -fdump-rtl-all

you can choose your dumps:
-fdump-tree-π to dump the tree or GIMPLE_PASS named π
-fdump-ipa-π to dump the i.p.a. SIMPLE_IPA_PASS or IPA_PASS named π
-fdump-rtl-π to dump the r.t.l. RTL_PASS named π

dump files don’t contain all the information
(and there is no way to parse them) 28.

26Next gcc-4.7 will have improved [before/after] flags
27Unless the pass name starts with *.
28Some Gcc gurus dream of a fully accurate and reparsable textual representation of

Gimple
Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 70 / 138

GCC Internals optimization passes

Dump example: input source example1.c

(using gcc-melt29 svn rev. 174968 ≡ gcc-trunk svn rev. 174941, of june 11th 2011)

1 /∗ example1 . c ∗ /
extern i n t gex (i n t) ;

3

i n t foo (i n t x , i n t y) {
5 i f (x>y)

return gex (x−y) ∗ gex (x+y) ;
7 else

return foo (y , x) ;
9 }

11 void bar (i n t n , i n t ∗ t) {
i n t i ;

13 for (i =0; i <n ; i ++)
t [i] = foo (t [i] , i) + i ;

15 }

29The Melt branch (not the plugin) is dumping into chronologically named files, e.g.
example1.c.%0026.017t.ssa!

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 71 / 138

GCC Internals optimization passes

Dump gimplification example1.c.004t.gimple

bar (int n, int * t) {
long unsigned int D.2698;
long unsigned int D.2699;
int * D.2700;
int D.2701; int D.2702; int D.2703;
int i;
i = 0;
goto <D.1597>;
<D.1596>:
D.2698 = (long unsigned int) i;
D.2699 = D.2698 * 4;
D.2700 = t + D.2699;
D.2698 = (long unsigned int) i;
D.2699 = D.2698 * 4;
D.2700 = t + D.2699;
D.2701 = *D.2700;
D.2702 = foo (D.2701, i);
D.2703 = D.2702 + i;

*D.2700 = D.2703;
i = i + 1;

<D.1597>:
if (i < n) goto <D.1596>;
else goto <D.1598>;
<D.1598>: }

foo (int x, int y) {
int D.2706; int D.2707; int D.2708;
int D.2709; int D.2710;
if (x > y) goto <D.2704>;
else goto <D.2705>;
<D.2704>:
D.2707 = x - y;
D.2708 = gex (D.2707);
D.2709 = x + y;
D.2710 = gex (D.2709);
D.2706 = D.2708 * D.2710;
return D.2706;
<D.2705>:
D.2706 = foo (y, x);
return D.2706; }

functions in reverse order; 3 operands instructions; generated temporaries; generated goto-s

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 72 / 138

GCC Internals optimization passes

Dump SSA - [part of] example1.c.017t.ssa
only the foo function of that dump file, in Static Single Assignment SSA form

;; Function foo
(foo, funcdef_no=0, decl_uid=1589,

cgraph_uid=0)
Symbols to be put in SSA form { .MEM }
Incremental SSA update started at block: 0
Number of blocks in CFG: 6
Number of blocks to update: 5 (83%)

foo (int x, int y) {
int D.2710; int D.2709;
int D.2708; int D.2707; int D.2706;

<bb 2>:
if (x2(D) > y3(D))
goto <bb 3>;

else goto <bb 4>;

<bb 3>:
D.27074 = x2(D) - y3(D);
D.27085 = gex (D.27074);
D.27096 = x2(D) + y3(D);
D.27107 = gex (D.27096);
D.27068 = D.27085 * D.27107;
goto <bb 5>;

<bb 4>:
D.27069 = foo (y3(D), x2(D));

<bb 5>:
D.27061 = Φ <D.27068(3), D.27069(4)>
return D.27061; }

SSA⇔ each variable is assigned once; suffix (D) for default definitions of SSA names
e.g D.27074 [appearing as D.2707_4 in dump files]

Basic blocks: only entered at their start
φ-nodes; “union” of values coming from two edges

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 73 / 138

GCC Internals optimization passes

IPA dump - [tail of] example1.c.049i.inline

;; Function bar (bar, funcdef_no=1,
decl_uid=1593, cgraph_uid=1)

bar (int n, int * t) {
int i;
int D.2703; int D.2702; int D.2701;
int * D.2700;
long unsigned int D.2699;
long unsigned int D.2698;

BLOCK 2 freq:900
PRED: ENTRY [100.0%] (fallthru,exec)
goto <bb 4>;
SUCC: 4 [100.0%] (fallthru,exec)

BLOCK 3 freq:9100
PRED: 4 [91.0%] (true,exec)
D.2698_8 = (long unsigned int) i_1;
D.2699_9 = D.2698_8 * 4; /// 4 ≡ sizeof (int)
D.2700_10 = t_6(D) + D.2699_9;
D.2701_11 = *D.2700_10;
D.2702_12 = foo (D.2701_11, i_1);

D.2703_13 = D.2702_12 + i_1;

*D.2700_10 = D.2703_13;
i_14 = i_1 + 1;
SUCC: 4 [100.0%]

(fallthru,dfs_back,exec)

BLOCK 4 freq:10000
PRED: 2 [100.0%]

(fallthru,exec) 3 [100.0%]
(fallthru,dfs_back,exec)

i_1 = PHI <0(2), i_14(3)>
if (i_1 < n_3(D))
goto <bb 3>;

else goto <bb 5>;
SUCC: 3 [91.0%] (true,exec) 5 [9.0%] (false,exec)

BLOCK 5 freq:900
PRED: 4 [9.0%] (false,exec)
return;
SUCC: EXIT [100.0%]

}

The call to foo has been inlined; edges of CFG have frequencies

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 74 / 138

GCC Internals optimization passes

RTL dump [small part of] example1.c.162r.reginfo

;; Function bar (bar, funcdef_no=1, decl_uid=1593,
cgraph_uid=1)

verify found no changes in insn with uid = 31.
(note 21 0 17 2 [bb 2] NOTE_INSN_BASIC_BLOCK)
(insn 17 21 18 2 (set (reg/v:SI 84 [n])

(reg:SI 5 di [n]))
example1.c:11 64 {*movsi_internal}

(expr_list:REG_DEAD (reg:SI 5 di [n])
(nil)))

(insn 18 17 19 2 (set (reg/v/f:DI 85 [t])
(reg:DI 4 si [t]))
example1.c:11 62 {*movdi_internal_rex64}

(expr_list:REG_DEAD (reg:DI 4 si [t])
(nil)))

(note 19 18 23 2 NOTE_INSN_FUNCTION_BEG)
(insn 23 19 24 2 (set (reg:CCNO 17 flags)

(compare:CCNO (reg/v:SI 84 [n])
(const_int 0 [0])))
example1.c:13 2 {*cmpsi_ccno_1}

(nil))
(jump_insn 24 23 25 2 (set (pc)

(if_then_else (le (reg:CCNO 17 flags)
(const_int 0 [0]))

(label_ref:DI 42)
(pc))) example1.c:13 594 *jcc_1

(expr_list:REG_DEAD (reg:CCNO 17 flags)
(expr_list:REG_BR_PROB (const_int 900 [0x384])

(nil)))
-> 42)
(note 25 24 26 3 [bb 3] NOTE_INSN_BASIC_BLOCK)
(insn 26 25 20 3 (set (reg:DI 82 [ivtmp.14])

(reg/v/f:DI 85 [t])) 62 {*movdi_internal_rex64}
(expr_list:REG_DEAD (reg/v/f:DI 85 [t])

(nil)))
(insn 20 26 37 3 (set (reg/v:SI 78 [i])

(const_int 0 [0])) example1.c:13 64
{*movsi_internal}

(nil))
(code_label 37 20 27 4 9 "" [1 uses])
(note 27 37 29 4 [bb 4] NOTE_INSN_BASIC_BLOCK)
(insn 29 27 30 4 (set (reg:SI 4 si)

(reg/v:SI 78 [i])) example1.c:14 64 {*movsi_internal}
(nil))

(insn 30 29 31 4 (set (reg:SI 5 di)
(mem:SI (reg:DI 82 [ivtmp.14])

[2 MEM[base: D.2731_28, offset: 0B]+0 S4 A32]))
example1.c:14 64 {*movsi_internal}

(nil))
/// etc...

I [Basile] can’t explain it /; but notice x86 specific code

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 75 / 138

GCC Internals optimization passes

generated assembly [part of] example1.s

.file "example1.c"

options enabled: -fasynchronous-unwind-tables
-fauto-inc-dec
etc etc etc . . .
-fverbose-asm -fzee -fzero-initialized-in-bss
-m128bit-long-double -m64 -m80387
-maccumulate-outgoing-args -malign-stringops
-mfancy-math-387 mfp-ret-in-387 -mglibc
-mieee-fp -mmmx -mno-sse4 -mpush-args
-mred-zone msse -msse2 -mtls-direct-seg-refs

.globl bar

.type bar, @function
bar:
.LFB1:

.cfi_startproc
pushq %r12 #
.cfi_def_cfa_offset 16
.cfi_offset 12, -16
testl %edi, %edi # n
movl %edi, %r12d # n, n
pushq %rbp #
.cfi_def_cfa_offset 24
.cfi_offset 6, -24
pushq %rbx #
.cfi_def_cfa_offset 32
.cfi_offset 3, -32

jle .L7 #,
movq %rsi, %rbp # t, ivtmp.14
xorl %ebx, %ebx # i
.p2align 4,,10
.p2align 3

.L9:
movl 0(%rbp), %edi # MEM[base: D.2731_28, offset: 0B],
movl %ebx, %esi # i,
call foo #
addl %ebx, %eax # i, tmp86
addl $1, %ebx #, i
movl %eax, 0(%rbp) # tmp86, MEM[base: D.2731_28, offset: 0B]
addq $4, %rbp #, ivtmp.14
cmpl %r12d, %ebx # n, i
jne .L9 #,

.L7:
popq %rbx #
.cfi_def_cfa_offset 24
popq %rbp #
.cfi_def_cfa_offset 16
popq %r12 #
.cfi_def_cfa_offset 8
ret .cfi_endproc

.LFE1:
.size bar, .-bar
.ident "GCC: (GNU) 4.7.0 20110611 (experimental)

[trunk revision 174943]"
.section .note.GNU-stack,"",@progbits

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 76 / 138

GCC Internals optimization passes

Order of executed passes; running gimple passes

When cc1 don’t get the -quiet program argument, names of executed
IPA passes are printed.
Plugins know about executed passes thru PLUGIN_PASS_EXECUTION
events.
global variable current_pass

understanding all the executed passes is not very simple

Simple GIMPLE_PASS-es are executed one (compiled) function at a time.
global cfun points to the current function as a struct function from
$GCCSOURCE/gcc/function.h

global current_function_decl is a tree

cfun is NULL for non-gimple passes (i.e. IPA_PASS-es)

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 77 / 138

GCC Internals optimization passes

running inter-procedural passes

They obviously work on the whole compilation unit, so run “once”30.

Using the cgraph_nodes global from $GCCSOURCE/gcc/cgraph.h, they often do

struct cgraph_node *node;
for (node = cgraph_nodes; node; node = node->next) {

if (!gimple_has_body_p (node->decl)
|| node->clone_of)

continue;
// do something useful with node
}

If node->decl is a FUNCTION_DECL tree, we can retrieve its body (a sequence
of Gimple-s) using gimple_body (from $GCCSOURCE/gcc/gimple.h).
However, often that body is not available, because only the control flow graph
exist at that point. We can use DECL_STRUCT_FUNCTION to retrieve a
struct function, then ENTRY_BLOCK_PTR_FOR_FUNCTION to get a
basic_block, etc...

30But the pass manager could run again such a pass.
Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 78 / 138

GCC Internals plugins

Plugins

I [Basile] think that: plugins are a very important feature of Gcc, but
most Gcc developers don’t care
some Gcc hackers are against them
Gcc has no stable API [yet?], no binary compatibility
Gcc internals are under-documented
plugins are dependent upon the version of Gcc
FSF was hard to convince (plugins required changes in licensing)
attracting outside developers to make plugins is hard

please code Gcc plugins or extensions (using Melt)

There are still [too] few plugins:
TreeHydra (Mozilla), DragonEgg (LLVM), Milepost/Ctuning??, MELT, etc . . .
plugins should be GPL compatible free software
(GCC licence probably forbids to use proprietary Gcc plugins).
some distributed Gcc compilers have disabled plugins /
plugins might not work
(e.g. a plugin started from lto1 can’t do front-end things like registering pragmas)

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 79 / 138

GCC Internals plugins

Why code [plugins in C or] Gcc extensions [in MELT]

IMHO:
Don’t code plugins for features which should go in core Gcc

You can’t do everything thru plugins, e.g. a new front-end for a new
language.

Gcc extensions (plugins in C, or extensions in MELT) are useful for:
research and prototyping (of new compilation techniques)

specific processing of source code (which don’t have its place inside Gcc core):
coding rules validation (e.g. Misra-C, Embedded C++, DOI178?, . . .), including
library or software specific rules
(e.g. every pthread_mutex_lock should have its matching pthread_mutex_unlock in
the same function or block)
improved type checking
(e.g. typing of variadic functions like g_object_set in Gtk)
specific optimizations - (e.g. fprintf(stdout,...) → printf(...))

Such specific processing don’t have its place inside Gcc itself, because it
is tied to a particular { domain, corporation, community, software ... }

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 80 / 138

GCC Internals plugins

dreams of Gcc extensions [in MELT]

You could dare coding these as Gcc plugins in plain C, but even as Melt
extensions it is not easy!

Hyper-optimization extensions i.e. -O∞ optimization level ,
Gcc guidelines require that passes execute in linear time; but some clever optimizations are
provided by cubic or exponential algorithms; some particular users could afford them.

Clever warnings and static analysis
a free competitor to CoverityTM

idea explored in a Google Summer of Code 2011 project by Pierre Vittet,
e.g. https://github.com/Piervit/GMWarn
application specific analysis
Alexandre Lissy, Model Checking the Linux Kernel

tools support for large free software (Kde?, Gnome?, . . .)

Free Software wants31 you to code Gcc extensions!

31Or is it just me ,?

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 81 / 138

https://github.com/Piervit/GMWarn

GCC Internals plugins

Running plugins

Users can run plugins with program options to gcc like
-fplugin=/path/to/name.so
-fplugin-arg-name-key[=value]

With a short option -fplugin=name plugins are loaded from a
predefined plugin directory32 as
-fplugin=‘gcc -print-file-name=plugin‘/name.so

Several plugins can be loaded in sequence.

Gcc accept plugins only on ELF systems (e.g. Gnu/Linux) with dlopen,
provided plugins have been enabled at configuration time.

the plugin is dlopen-ed by cc1 or cc1plus or even lto1

(caveat: front-end functions are not in lto1)

32This could be enhanced in next gcc-4.7 with language-specific subdirectories.

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 82 / 138

GCC Internals plugins

Plugin as used from Gcc core

Details on gcc.gnu.org/onlinedocs/gccint/Plugins.html; see also file
$GCCSOURCE/gcc/gcc-plugin.h (which gets installed under the plugin directory)

cc1 (or lto1, ...) is initializing plugins quite early (before parsing the compilation
unit or running passes). It checks that plugin_is_GPL_compatible then run
the plugin’s plugin_init function (which gets version info, and arguments, etc...)

Inside Gcc, plugins are invoked from several places, e.g.
execute_one_pass calls

invoke_plugin_callbacks (PLUGIN_PASS_EXECUTION, pass);

The PLUGIN_PASS_EXECUTION is a plugin event. Here, the pass is the
event-specific gcc data (for many events, it is NULL). There are ≈ 20 events (and
more could be dynamically added, e.g. for one plugin to hook other plugins.).

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 83 / 138

gcc.gnu.org/onlinedocs/gccint/Plugins.html

GCC Internals plugins

Event registration from plugins

Plugins should register the events they are interested in, usually from their
plugin_init function, with a callback of type

/* The prototype for a plugin callback function.
gcc_data - event-specific data provided by GCC
user_data - plugin-specific data provided by the plug-in. */
typedef void (*plugin_callback_func)

(void *gcc_data, void *user_data);

Plugins register their callback function callback of above type
plugin_callback_func using register_callback (from file
$GCCSOURCE/gcc/gcc-plugin.h), e.g. from melt-runtime.c

register_callback (/*name:*/ melt_plugin_name,
/*event:*/ PLUGIN_PASS_EXECUTION,
/*callback:*/ melt_passexec_callback,
/*no user_data:*/ NULL);

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 84 / 138

GCC Internals plugins

Adding or replacing passes in a plugin

(you should know where to add your new pass!)

Use register_callback with a struct register_pass_info data but
no callback, e.g. to register yourpass after the pass named "cfg":

struct register_pass_info passinfo;
memset (&passinfo, 0, sizeof (passinfo));
passinfo.pass = (struct opt_pass*) yourpass;
passinfo.reference_pass_name = "cfg";
passinfo.ref_pass_instance_number = -1;
passinfo.pos_op = PASS_POS_INSERT_AFTER;
register_callback (plugin_info->base_name, PLUGIN_PASS_MANAGER_SETUP,

/*no callback routine*/ NULL,
&passinfo);

The pos_op could also be PASS_POS_INSERT_BEFORE or PASS_POS_REPLACE.

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 85 / 138

GCC Internals plugins

Main plugin events

A non-exhaustive list (extracted from $GCCSOURCE/gcc/plugin.def), with the role
of the optional gcc data:

1 PLUGIN_START (called from toplev.c) called before compile_file

2 PLUGIN_FINISH_TYPE, called from c-parser.c with the new type tree

3 PLUGIN_PRE_GENERICIZE (from c-parser.c) to see the low level AST in C or
C++ front-end, with the new function tree

4 PLUGIN_GGC_START or PLUGIN_GGC_END called by Ggc

5 PLUGIN_ATTRIBUTES (from attribs.c) or PLUGIN_PRAGMAS (from
c-family/c-pragma.c) to register additional attributes or pragmas from front-end.

6 PLUGIN_FINISH_UNIT (called from toplev.c) can be used for LTO summaries
7 PLUGIN_FINISH (called from toplev.c) to signal the end of compilation
8 PLUGIN_ALL_PASSES_{START,END}, PLUGIN_ALL_IPA_PASSES_{START,

END}, PLUGIN_EARLY_GIMPLE_PASSES_{START,END} are related to passes
9 PLUGIN_PASS_EXECUTION identify the given pass, and

PLUGIN_OVERRIDE_GATE (with &gate_status) may override gate decisions

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 86 / 138

MELT

Contents

1 introduction
disclaimer & audience
overview on GCC & MELT
extending GCC
installing and using MELT

2 simple MELT examples
Counting functions in your C code
Showing the GCC pass names
Searching function signature by matching

3 GCC Internals
complexity of GCC
overview inside GCC (cc1)
memory management inside GCC
optimization passes
plugins

4 MELT
why MELT?
handling GCC internal data with MELT
matching GCC data with MELT
current and future work on MELT

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 87 / 138

MELT why MELT?

Motivations for MELT

Gcc extensions address a limited number of users33, so their development
should be facilitated (cost-effectiveness issues)

extensions should be [meta-] plugins, not Gcc variants [branches, forks] 34

which are never used
⇒ extensions delivered for and compatible with Gcc releases
when understanding Gcc internals, coding plugins in plain C is very hard
(because C is a system-programming low-level language, not a high-level
symbolic processing language)
⇒ a higher-level language is useful
garbage collection - even inside passes - eases development for
(complex and circular) compiler data structures
⇒ Ggc is not enough : a G-C working inside passes is needed
Extensions filter or search existing Gcc internal representations
⇒ powerful pattern matching (e.g. on Gimple, Tree-s, . . .) is needed

33Any development useful to all Gcc users should better go inside Gcc core!
34Most Gnu/Linux distributions don’t even package Gcc branches or forks.

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 88 / 138

MELT why MELT?

Embedding a scripting language is impossible

Many scripting or high-level languages 35 can be embedded in some other software:
Lua, Ocaml, Python, Ruby, Perl, many Scheme-s, etc . . .

But in practice this is not doable for Gcc (we tried one month for Ocaml) :
mixing two garbage collectors (the one in the language & Ggc) is error-prone
Gcc has many existing GTY-ed types
the Gcc API is huge, and still evolving
(glue code for some scripting implementation would be obsolete before finished)

since some of the API is low level (accessing fields in struct-s), glue code
would have big overhead⇒ performance issues
Gcc has an ill-defined, non “functional” [e.g. with only true functions] or
“object-oriented” API; e.g. iterating is not always thru functions and callbacks:
/* iterating on every gimple stmt inside a basic block bb */
for (gimple_stmt_iterator gsi = gsi_start_bb (bb);

!gsi_end_p (gsi); gsi_next (&gsi)) {
gimple stmt = gsi_stmt (gsi); /* handle stmt ...*/ }

35Pedantically, languages’ implementations can be embedded!
Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 89 / 138

MELT why MELT?

Melt, a Domain Specific Language translated to C

Melt is a DSL translated to C in the style required by Gcc

C code generators are usual inside Gcc

the Melt-generated C code is designed to fit well into Gcc (and Ggc)

mixing small chunks of C code with Melt is easy

Melt contains linguistic devices to help Gcc-friendly C code generation

generating C code eases integration into the evolving Gcc API

The Melt language itself is tuned to fit into Gcc
In particular, it handles both its own Melt values and existing Gcc stuff

The Melt translator is bootstrapped, and Melt extensions are loaded by the
melt.so plugin

With Melt, Gcc may generate C code while running, compiles it36 into a Melt
binary .so module and dlopen-s that module.

36By invoking make from melt.so loaded by cc1; often that make will run another
gcc -fPIC

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 90 / 138

MELT why MELT?

Melt values vs Gcc stuff

Melt handles first-citizen Melt values:
values like many scripting languages have (Scheme, Python, Ruby, Perl,
even Ocaml . . .)
Melt values are dynamically typed37, organized in a lattice; each Melt
value has its discriminant (e.g. its class if it is an object)
you should prefer dealing with Melt values in your Melt code
values have their own garbage-collector (above Ggc), invoked implicitly

But Melt can also handle ordinary Gcc stuff:
stuff is usually any GTY-ed Gcc raw data, e.g. tree, gimple, edge,
basic_block or even long

stuff is explicitly typed in Melt code thru c-type annotations like :tree,
:gimple etc.
adding new ctypes is possible (some of the Melt runtime is generated)

37Because designing a type-system friendly with Gcc internals mean making a type
theory of Gcc internals!

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 91 / 138

MELT why MELT?

Things = (Melt Values) ∪ (Gcc Stuff)

things Melt values Gcc stuff
memory
manager

Melt GC (implicit, as needed,
even inside passes)

Ggc (explicit, between passes)

allocation quick, in the birth zone ggc_alloc, by various
zones

GC tech-
nique

copying generational (old→
ggc)

mark and sweep

GC time O(λ) λ = size of young live ob-
jects

O(σ) σ = total memory size

typing dynamic, with discriminant static, GTY annotation
GC roots local and global variables only global data
GC suited
for

many short-lived temporary
values

quasi-permanent data

GC usage in generated C code in hand-written code
examples lists, closures, hash-maps,

boxed tree-s, objects . . .
raw tree stuff, raw gimple
. . .

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 92 / 138

MELT why MELT?

Melt garbage collection

co-designed with the Melt language
co-implemented with the Melt translator
manage only Melt values
all Gcc raw stuff is still handled by Ggc

copying generational Melt garbage collector (for Melt values only):
1 values quickly allocated in birth region

(just by incrementing a pointer; a Melt GC is triggered when the birth region is full.)
2 handle well very temporary values and local variables
3 minor Melt GC: scan local values (in Melt call frames), copy and move them

out of birth region into Ggc heap
4 full Melt GC = minor GC + ggc_collect (); 38

5 all local pointers (local variables) are in Melt frames
6 needs a write barrier (to handle old→ young pointers)
7 requires tedious C coding: call frames, barriers, normalizing nested

expressions (z = f(g(x),y)→ temporary τ = g(x); z=f(τ, y);)
8 well suited for generated C code

38So Melt code can trigger Ggc collection even inside Gcc passes!

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 93 / 138

MELT why MELT?

a first silly example of Melt code
Nothing meaningful, to give a first taste of Melt language:

;; -*- lisp -*- MELT code in firstfun.melt
(defun foo (x :tree t)

(tuple x
(make_tree discr_tree t)))

comments start with ; up to EOL; case is not meaningful: defun ≡ deFUn

Lisp-like syntax: (operator operands . . .) so
parenthesis are always significant in Melt (f) 6≡ f, but in C f() 6≡ f ≡ (f)

defun is a “macro” for def ining functions in Melt

Melt is an expression based language: everything is an expression giving a result

foo is here the name of the defined function

(x :tree t) is a formal arguments list (of two formals x and t); the “ctype
keyword” :tree qualifies next formals (here t) as raw Gcc tree-s stuff

tuple is a “macro” to construct a tuple value - here made of 2 component values

make_tree is a “primitive” operation, to box the raw tree stuff t into a value

discr_tree is a “predefined value”, a discriminant object for boxed tree values

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 94 / 138

MELT why MELT?

generated C code from previous example
The [low level] C code, has more than 680 lines in generated firstfun.c, including

melt_ptr_t MELT_MODULE_VISIBILITY
meltrout_1_firstfun_FOO
(meltclosure_ptr_t closp_,
melt_ptr_t firstargp_,
const melt_argdescr_cell_t xargdescr_[],
union meltparam_un *xargtab_,
const melt_argdescr_cell_t xresdescr_[],
union meltparam_un *xrestab_)

{
struct frame_meltrout_1_firstfun_FOO_st {

int mcfr_nbvar;
#if ENABLE_CHECKING

const char *mcfr_flocs;
#endif

struct meltclosure_st *mcfr_clos;
struct excepth_melt_st *mcfr_exh;
struct callframe_melt_st *mcfr_prev;
void *mcfr_varptr[5];
tree loc_TREE__o0;

} *framptr_ = 0, meltfram__;
memset (&meltfram__, 0, sizeof (meltfram__));
meltfram__.mcfr_nbvar = 5;
meltfram__.mcfr_clos = closp_;
meltfram__.mcfr_prev

= (struct callframe_melt_st *) melt_topframe;
melt_topframe

= (struct callframe_melt_st *) &meltfram__;
MELT_LOCATION ("firstfun.melt:2:/ getarg");

#ifndef MELTGCC_NOLINENUMBERING
#line 2 "firstfun.melt" /**::getarg::**/
#endif /*MELTGCC_NOLINENUMBERING */

/*_.X__V2*/ meltfptr[1] = (melt_ptr_t) firstargp_;
if (xargdescr_[0] != MELTBPAR_TREE)
goto lab_endgetargs;

/*_?*/ meltfram__.loc_TREE__o0 = xargtab_[0].meltbp_tree;
lab_endgetargs:;
/*_.MAKE_TREE__V3*/ meltfptr[2] =
#ifndef MELTGCC_NOLINENUMBERING
#line 4 "firstfun.melt" /**::expr::**/
#endif /*MELTGCC_NOLINENUMBERING */

(meltgc_new_tree
((meltobject_ptr_t) ((/*!DISCR_TREE */ meltfrout->tabval[0])),
(/*_?*/ meltfram__.loc_TREE__o0)));;

{
struct meltletrec_1_st {

struct MELT_MULTIPLE_STRUCT (2) rtup_0__TUPLREC__x1;
long meltletrec_1_endgap;

} *meltletrec_1_ptr = 0;
meltletrec_1_ptr = (struct meltletrec_1_st *)

meltgc_allocate (sizeof (struct meltletrec_1_st), 0);
/*_.TUPLREC___V5*/ meltfptr[4] =

(void *) &meltletrec_1_ptr->rtup_0__TUPLREC__x1;
meltletrec_1_ptr->rtup_0__TUPLREC__x1.discr =

(meltobject_ptr_t) (((void *)
(MELT_PREDEF (DISCR_MULTIPLE))));

meltletrec_1_ptr->rtup_0__TUPLREC__x1.nbval = 2;
((meltmultiple_ptr_t) (/*_.TUPLREC___V5*/ meltfptr[4]))->tabval[0] =

(melt_ptr_t) (/*_.X__V2*/ meltfptr[1]);
((meltmultiple_ptr_t) (/*_.TUPLREC___V5*/ meltfptr[4]))->tabval[1] =

(melt_ptr_t) (/*_.MAKE_TREE__V3*/ meltfptr[2]);
meltgc_touch (/*_.TUPLREC___V5*/ meltfptr[4]);
/*_.RETVAL___V1*/ meltfptr[0] = /*_.TUPLE___V4*/ meltfptr[3];;

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 95 / 138

MELT why MELT?

“hello world” in Melt, a mix of Melt and C code

;; file helloworld.melt
(code_chunk helloworldchunk

#{ /* our $HELLOWORLDCHUNK */ int i=0;
$HELLOWORLDCHUNK#_label:
printf("hello world from MELT %d\n", i);
if (i++ < 3) goto $HELLOWORLDCHUNK#_label; }#)

code_chunk is to Melt what asm is to C : for inclusion of chunks in the
generated code (C for Melt, assembly for C or gcc);
rarely useful, but we can’t live without!
helloworldchunk is the state symbol; it gets uniquely expanded 39

in the generated code (as a C identifier unique to the C file)

#{ and }# delimit macro-strings, lexed by Melt as a list of symbols (when
prefixed by $) and strings: #{A"$B#C"\n"}# ≡
("A\"" b "C\"\\n") [a 3-elements list, the 2nd is symbol b, others are
strings]

39Like Gcc predefined macro __COUNTER__ or Lisp’s gensym
Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 96 / 138

MELT why MELT?

running our helloworld.melt program
Notice that it has no defun so don’t define any Melt function.
It has one single expression, useful for its side-effects!
With the Melt branch:
gcc-melt -fmelt-mode=runfile \

-fmelt-arg=helloworld.melt -c example1.c

With the Melt plugin:
gcc-4.7 -fplugin=melt -fplugin-arg-melt-mode=runfile \

-fplugin-arg-melt-arg=helloworld.melt -c example1.c

Run as
cc1: note: MELT generated new file

/tmp/GCCMeltTmpdir-1c5b3a95/helloworld.c
cc1: note: MELT has built module

/tmp/GCCMeltTmpdir-1c5b3a95/helloworld.so in 0.416 sec.
hello world from MELT
hello world from MELT
hello world from MELT
hello world from MELT
cc1: note: MELT removed 3 temporary files

from /tmp/GCCMeltTmpdir-1c5b3a95

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 97 / 138

MELT why MELT?

How Melt is running

Using Melt as plugin is the same as using the Melt branch: ∀α∀σ
-fmelt-α=σ in the Melt branch
≡ -fplugin-arg-melt-α=σ with the melt.so plugin
for development, the Melt branch40 could be preferable
(more checks and debugging features)

Melt don’t do anything more than Gcc without a mode
so without any mode, gcc-melt ≡ gcc-trunk
use -fmelt-mode=help to get the list of modes
your Melt extension usually registers additional mode[s]

Melt is not a Gcc front-end
so you need to pass a C (or C++, . . .) input file to gcc-melt or gcc
often with -c empty.c or -x c /dev/null
when asking Melt to translate your Melt file
some Melt modes run a make to compile thru gcc -fPIC the
generated C code; most of the time is spent in that make compiling
the generated C code

40The trunk is often merged (weekly at least) into the Melt branch
Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 98 / 138

MELT why MELT?

Melt modes for translating *.melt files

(usually run on empty.c)

The name of the *.melt file is passed with -fmelt-arg=filename.melt
The mode µ passed with -fmelt-mode=µ

runfile to translate into a C file, make the filename.so Melt module,
load it, then discard everything.
translatedebug to translate into a .so Melt module built with gcc
-fPIC -g

translatefile to translate into a .c generated C file
translatetomodule to translate into a .so Melt module
(keeping the .c file).

Sometimes, several C files filename.c, filename+01.c,
filename+02.c, . . . are generated from your filename.melt

A single Melt module filename.so is generated, to be dlopen-ed by Melt
you can pass -fmelt-extra=µ1:µ2 to also load your µ1 & µ2 modules

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 99 / 138

MELT why MELT?

expansion of the code_chunk in generated C

389 lines of generated C, including comments, #line, empty lines, with:

{
#ifndef MELTGCC_NOLINENUMBERING
#line 3
#endif

int i=0; /* our HELLOWORLDCHUNK__1 */
HELLOWORLDCHUNK__1_label: printf("hello world from MELT\n");
if (i++ < 3) goto HELLOWORLDCHUNK__1_label; ;}

;

Notice the unique expansion HELLOWORLDCHUNK__1 of the state symbol
helloworldchunk

Expansion of code with holes given thru macro-strings is central in Melt

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 100 / 138

MELT why MELT?

Why Melt generates so many C lines?

normalization requires lots of temporaries
translation to C is “straightforward” ,

the generated C code is very low-level!
code for forwarding local pointers (for Melt copying GC) is generated
most of the code is in the initialization:

the generated start_module_melt takes a parent environment and
produces a new environment
uses hooks in the INITIAL_SYSTEM_DATA predefined value
creates a new environment (binding exported variables)
Melt don’t generate any “data” : all the data is built by (sequential, boring,
huge) code in start_module_melt

the Melt language is higher-level than C
ratio of 10-35 lines of generated C code for one line of Melt is not
uncommon
⇒ the bottleneck is the compilation by gcc -fPIC thru make of the
generated C code

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 101 / 138

MELT handling GCC internal data with MELT

Gcc internal representations

Gcc has several “inter-linked” representations:
Generic and Tree-s in the front-ends
(with language specific variants or extensions)

Gimple and others in the middle-end
Gimple operands are Tree-s
Control Flow Graph Edge-s, Basic Block-s, Gimple Seq-ences
use-def chains
Gimple/SSA is a Gimple variant

RTL and others in the back-end

A given representation is defined by many GTY-ed C types
(discriminated unions, “inheritance”, . . .)
tree, gimple, basic_block, gimple_seq, edge . . . are typedef-ed
pointers

Some representations have various roles
Tree both for declarations and for Gimple arguments
in gcc-4.3 or before Gimples were Trees

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 102 / 138

MELT handling GCC internal data with MELT

Why a Lisp-y syntax for Melt

True reason: I [Basile] am lazy ,, also

Melt is bootstrapped
now Melt translator41 is written in Melt
$GCCMELTSOURCE/gcc/melt/warmelt-*.melt
⇒ the C translation of Melt translator is in its source repository42

$GCCMELTSOURCE/gcc/melt/generated/warmelt-*.c
parts of the Melt runtime (G-C) are generated
$GCCMELTSOURCE/gcc/melt/generated/meltrunsup*.[ch]
major dependency of Melt translator is Ggc43

reading in melt-runtime.c Melt syntax is nearly trivial
as in many Lisp-s or Scheme-s, most of the parsing work is done by
macro-expansion⇒ modular syntax (extensible by advanced users)
existing support for Lisp (Emacs mode) works for Melt

familiar look if you know Emacs Lisp, Scheme, Common Lisp, or Gcc .md

41Melt started as a Lisp program
42This is unlike other C generators inside Gcc
43The Melt translator almost don’t care of tree-s or gimple-s

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 103 / 138

MELT handling GCC internal data with MELT

Why and how Melt is bootstrapped

Melt delivered in both original .melt & translated .c forms
gurus could make upgrade-warmelt to regenerate all generated code in
source tree.

at installation, Melt translates itself several times
(most of installation time is spent in those [re]translations and in compiling them)

⇒ the Melt translator is a good test case for Melt;
it exercices its runtime and itself (and Gcc do likewise)

historically, Melt translator written using less features than those newly
implemented (e.g. pattern matching rarely used in translator)

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 104 / 138

MELT handling GCC internal data with MELT

main Melt traits [inspired by Lisp]

let : define sequential local bindings (like let* in Scheme) and
evaluate sub-expressions with them
letrec : define co-recursive local constructive bindings
if : simple conditional expression (like ?: in C); when, unless sugar
cond : complex conditional expression (with several conditions)
instance : build dynamically a new Melt object
definstance : define a static instance of some class
defun : define a named function
lambda : build dynamically an anonymous function closure
match : for pattern-matching44

setq : assignment
forever : infinite loop, exited with exit

return : return from a function
may return several things at once (primary result should be a value)

multicall : call with several results
44a huge generalization of switch in C

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 105 / 138

MELT handling GCC internal data with MELT

non Lisp-y features of Melt

Many linguistic devices to decribe how to generate C code
code_chunk to include bits of C
defprimitive to define primitive operations
defciterator to define iterative constructs
defcmatcher to define matching constructs

Values vs stuff :
c-type like :tree, :long to annotate stuff (in formals, bindings, . . .)
and :value to annotate values
quote, with lexical convention ’α ≡ (quote α)

(quote 2) ≡ ’2 is a boxed constant integer (but 2 is a constant long thing)
(quote "ab") ≡ ’"ab" is a boxed constant string
(quote x) ≡ ’x is a constant symbol (instance of class_symbol)

quote in Melt is different than quote in Lisp or Scheme.
In Melt it makes constant boxed values, so ’2 6≡ 2

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 106 / 138

MELT handling GCC internal data with MELT

defining your mode and pass in Melt

code by Pierre Vittet in his GMWarn extension

(defun test_fopen_docmd (cmd moduldata)
(let ((test_fopen ;a local binding!

(instance class_gcc_gimple_pass
:named_name ’"melt_test_fopen"
:gccpass_gate test_fopen_gate
:gccpass_exec test_fopen_exec
:gccpass_data (make_maptree discr_map_trees 1000)
:gccpass_properties_required ()

))) ;body of the let follows:
(install_melt_gcc_pass test_fopen "after" "ssa" 0)
(debug "test_fopen_mode installed test_fopen=" test_fopen)
;; return the pass to accept the mode
(return test_fopen)))

(definstance test_fopen class_melt_mode
:named_name ’"test_fopen"
:meltmode_help ’"monitor that after each call to fopen, there is a test on the returned value"
:meltmode_fun test_fopen_docmd

)
(install_melt_mode test_fopen)

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 107 / 138

MELT handling GCC internal data with MELT

Gcc Tree-s
A central front-end and middle-end representation in Gcc:
in C the type tree (a pointer)
See files $GCCSOURCE/gcc/tree.{def,h,c}, and also
$GCCSOURCE/gcc/c-family/c-common.def and other front-end
dependent files #include-d from $GCCBUILD/gcc/all-tree.def

tree.def contains ≈ 190 definitions like

/* Contents are in TREE_INT_CST_LOW and TREE_INT_CST_HIGH fields,
32 bits each, giving us a 64 bit constant capability. INTEGER_CST
nodes can be shared, and therefore should be considered read only.
They should be copied, before setting a flag such as TREE_OVERFLOW.
If an INTEGER_CST has TREE_OVERFLOW already set, it is known to be unique.
INTEGER_CST nodes are created for the integral types, for pointer
types and for vector and float types in some circumstances. */

DEFTREECODE (INTEGER_CST, "integer_cst", tcc_constant, 0)

or

/* C’s float and double. Different floating types are distinguished
by machine mode and by the TYPE_SIZE and the TYPE_PRECISION. */

DEFTREECODE (REAL_TYPE, "real_type", tcc_type, 0)

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 108 / 138

MELT handling GCC internal data with MELT

Tree representation in C
tree.h contains

struct GTY(()) tree_base {
ENUM_BITFIELD(tree_code) code : 16;
unsigned side_effects_flag : 1;
unsigned constant_flag : 1;
// many other flags

};
struct GTY(()) tree_typed {
struct tree_base base;
tree type;

};
// etc

union GTY ((ptr_alias (union lang_tree_node),
desc ("tree_node_structure (&%h)"), variable_size)) tree_node {

struct tree_base GTY ((tag ("TS_BASE"))) base;
struct tree_typed GTY ((tag ("TS_TYPED"))) typed;
// many other cases
struct tree_target_option GTY ((tag ("TS_TARGET_OPTION"))) target_option;

};

But $GCCSOURCE/gcc/coretypes.h has
typedef union tree_node *tree;

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 109 / 138

MELT handling GCC internal data with MELT

Gcc Gimple-s

Gimple-s represents instructions in Gcc
in C the type gimple (a pointer)
See files $GCCSOURCE/gcc/gimple.{def,h,c}

gimple.def contains 36 definitions (14 are for OpenMP !) like

/* GIMPLE_GOTO <TARGET> represents unconditional jumps.
TARGET is a LABEL_DECL or an expression node for computed GOTOs. */

DEFGSCODE(GIMPLE_GOTO, "gimple_goto", GSS_WITH_OPS)

or

/* GIMPLE_CALL <FN, LHS, ARG1, ..., ARGN[, CHAIN]> represents function
calls.
FN is the callee. It must be accepted by is_gimple_call_addr.
LHS is the operand where the return value from FN is stored. It may
be NULL.
ARG1 ... ARGN are the arguments. They must all be accepted by
is_gimple_operand.
CHAIN is the optional static chain link for nested functions. */

DEFGSCODE(GIMPLE_CALL, "gimple_call", GSS_CALL)

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 110 / 138

MELT handling GCC internal data with MELT

Gimple assigns

/* GIMPLE_ASSIGN <SUBCODE, LHS, RHS1[, RHS2]> represents the assignment
statement
LHS = RHS1 SUBCODE RHS2.
SUBCODE is the tree code for the expression computed by the RHS of the
assignment. It must be one of the tree codes accepted by
get_gimple_rhs_class. If LHS is not a gimple register according to
is_gimple_reg, SUBCODE must be of class GIMPLE_SINGLE_RHS.
LHS is the operand on the LHS of the assignment. It must be a tree node
accepted by is_gimple_lvalue.
RHS1 is the first operand on the RHS of the assignment. It must always be
present. It must be a tree node accepted by is_gimple_val.
RHS2 is the second operand on the RHS of the assignment. It must be a tree
node accepted by is_gimple_val. This argument exists only if SUBCODE is
of class GIMPLE_BINARY_RHS. */

DEFGSCODE(GIMPLE_ASSIGN, "gimple_assign", GSS_WITH_MEM_OPS)

Gimple operands are Tree-s. For Gimple/SSA, the Tree is often a SSA_NAME

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 111 / 138

MELT handling GCC internal data with MELT

Gimple data in C
in $GCCSOURCE/gcc/gimple.h:
/* Data structure definitions for GIMPLE tuples. NOTE: word markers

are for 64 bit hosts. */
struct GTY(()) gimple_statement_base {

/* [WORD 1] Main identifying code for a tuple. */
ENUM_BITFIELD(gimple_code) code : 8;
// etc...
/* Number of operands in this tuple. */
unsigned num_ops;
/* [WORD 3] Basic block holding this statement. */
struct basic_block_def *bb;
/* [WORD 4] Lexical block holding this statement. */
tree block; };

/* Base structure for tuples with operands. */
struct GTY(()) gimple_statement_with_ops_base {
/* [WORD 1-4] */
struct gimple_statement_base gsbase;
/* [WORD 5-6] SSA operand vectors. NOTE: It should be possible to

amalgamate these vectors with the operand vector OP. However,
the SSA operand vectors are organized differently and contain
more information (like immediate use chaining). */

struct def_optype_d GTY((skip (""))) *def_ops;
struct use_optype_d GTY((skip (""))) *use_ops; };

ThenBasile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 112 / 138

MELT handling GCC internal data with MELT

inline accessors to Gimple

gimple.h also have many inline functions, like e.g.

/* Return the code for GIMPLE statement G. crash if G is null */
static inline enum gimple_code gimple_code (const_gimple g) {...}
/* Set the UID of statement. data for inside passes */
static inline void gimple_set_uid (gimple g, unsigned uid) {...}
/* Return the UID of statement. */
static inline unsigned gimple_uid (const_gimple g) {...}
/* Return true if GIMPLE statement G has register or memory operands. */
static inline bool gimple_has_ops (const_gimple g) {...}
/* Return the set of DEF operands for statement G. */
static inline struct def_optype_d *gimple_def_ops (const_gimple g) {...}
/* Return operand I for statement GS. */
static inline tree gimple_op (const_gimple gs, unsigned i) {...}
/* If a given GIMPLE_CALL’s callee is a FUNCTION_DECL, return it.

Otherwise return NULL. This function is analogous to get_callee_fndecl in tree land. */
static inline tree gimple_call_fndecl (const_gimple gs) {...}
/* Return the LHS of call statement GS. */
static inline tree gimple_call_lhs (const_gimple gs) {...}

There are also functions to build or modify gimple

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 113 / 138

MELT handling GCC internal data with MELT

control-flow related representations inside Gcc

gimple are simple instructions
gimple_seq are sequence of gimple-s
basic_block are elementary blocks, containing a gimple_seq and
connected to other basic blocks thru edge-s
edge-s connect basic blocks (i.e. are jumps!)
loop-s are for dealing with loops, knowing their basic block headers and
latches
the struct control_flow_graph packs entry and exit blocks and a
vector of basic blocks for a function
the struct function packs the control_flow_graph and the
gimple_seq of the function body, etc . . .
loop-s are hierachically organized inside the struct loops (e.g. the
current_loops global) for the current function.

NB: not every representation is available in every pass!

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 114 / 138

MELT handling GCC internal data with MELT

Basic Blocks in Gcc

coretypes.h has typedef struct basic_block_def *basic_block;

In $GCCSOURCE/gcc/basic-block.h

/* Basic block information indexed by block number. */
struct GTY((chain_next ("%h.next_bb"), chain_prev("%h.prev_bb"))) basic_block_def {
/* The edges into and out of the block. */
VEC(edge,gc) *preds;
VEC(edge,gc) *succs; //etc ...
/* Innermost loop containing the block. */
struct loop *loop_father;
/* The dominance and postdominance information node. */
struct et_node * GTY ((skip (""))) dom[2];
/* Previous and next blocks in the chain. */
struct basic_block_def *prev_bb;
struct basic_block_def *next_bb;
union basic_block_il_dependent {

struct gimple_bb_info * GTY ((tag ("0"))) gimple;
struct rtl_bb_info * GTY ((tag ("1"))) rtl;

} GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
// etc
/* Various flags. See BB_* below. */
int flags;

};

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 115 / 138

MELT handling GCC internal data with MELT

gimple_bb_info & control_flow_graph
Also in basic-block.h

struct GTY(()) gimple_bb_info {
/* Sequence of statements in this block. */
gimple_seq seq;
/* PHI nodes for this block. */
gimple_seq phi_nodes;

};

/* A structure to group all the per-function control flow graph data. */
struct GTY(()) control_flow_graph {
/* Block pointers for the exit and entry of a function.

These are always the head and tail of the basic block list. */
basic_block x_entry_block_ptr;
basic_block x_exit_block_ptr;
/* Index by basic block number, get basic block struct info. */
VEC(basic_block,gc) *x_basic_block_info;
/* Number of basic blocks in this flow graph. */
int x_n_basic_blocks;
/* Number of edges in this flow graph. */
int x_n_edges;
// etc ...

};

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 116 / 138

MELT handling GCC internal data with MELT

Control Flow Graph and loop-s in Gcc

In $GCCSOURCE/gcc/cfgloop.h
/* Description of the loop exit. */
struct GTY (()) loop_exit {

/* The exit edge. */
struct edge_def *e;
/* Previous and next exit in the list of the exits of the loop. */
struct loop_exit *prev; struct loop_exit *next;
/* Next element in the list of loops from that E exits. */
struct loop_exit *next_e; };

typedef struct loop *loop_p;
/* Structure to hold information for each natural loop. */
struct GTY ((chain_next ("%h.next"))) loop {

/* Index into loops array. */
int num;
/* Number of loop insns. */
unsigned ninsns;
/* Basic block of loop header. */
struct basic_block_def *header;
/* Basic block of loop latch. */
struct basic_block_def *latch;
// etc ...

/* True if the loop can be parallel. */
bool can_be_parallel;
/* Head of the cyclic list of the exits of the loop. */
struct loop_exit *exits;

};

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 117 / 138

MELT handling GCC internal data with MELT

Caveats on Gcc internal representations

in principle, they are not stable (could change in 4.7 or next)
in practice, changing central representations (like gimple or tree) is
very difficult :

Gcc gurus (and users?) care about compilation time
Gcc people could “fight” for some bits
changing them is very costly: ⇒ need to patch every pass
you need to convince the whole Gcc community to enhance them
some Gcc heroes could change them

extensions or plugins cannot add extra data fields (into tree-s,
gimple-s45 or basic_block-s, ...)
⇒ use other data (e.g. associative hash tables) to link your data to them

45Gimple-s have uid-s but they are only for inside passes!

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 118 / 138

MELT handling GCC internal data with MELT

Handling GCC stuff with MELT

Gcc raw stuff is handled by Melt c-types like :gimple_seq or :edge

raw stuff can be passed as formal arguments or given as secondary
results
Melt functions

first argument46 should be a value
first result is a value

raw stuff have boxed values counterpart
raw stuff have hash-maps values (to associate a non-nil Melt value to a
tree, a gimple etc)
primitive operations can handle stuff or values
c-iterators can iterate inside stuff or values

46i.e. the reciever, when sending a message in Melt
Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 119 / 138

MELT handling GCC internal data with MELT

Primitives in Melt

Primitive operations have arbitrary (but fixed) signature, and give one result
(which could be :void).

used e.g. in Melt where body is some :basic_block stuff
(code by Jérémie Salvucci from xtramelt-c-generator.melt)

(let ((:gimple_seq instructions (gimple_seq_of_basic_block body)))
;; do something with instructions

)

(gimple_seq_of_basic_block takes a :basic_block stuff & gives a :gimple_seq stuff)

Primitives are defined thru defprimitive by macro-strings, e.g. in
$GCCMELTSOURCE/gcc/melt/xtramelt-ana-base.melt

(defprimitive gimple_seq_of_basic_block (:basic_block bb) :gimple_seq
#{(($BB)?bb_seq(($BB)):NULL)}#)

(always test for 0 or null, since Melt data is cleared initially)
Likewise, arithmetic on raw :long stuff is defined (in warmelt-first.melt):
(defprimitive +i (:long a b) :long
:doc #{Integer binary addition of $a and $b.}#
#{(($A) + ($B))}#)

(no boxed arithmetic primitive yet in Melt)
Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 120 / 138

MELT handling GCC internal data with MELT

c-iterators in Melt

C-iterators describe how to iterate, by generation of for-like constructs, with
input arguments - for parameterizing the iteration
local formals - giving locals changing on each iteration

So if bb is some Melt :basic_block stuff, we can iterate on its contained
:gimple-s using

(eachgimple_in_basicblock
(bb) ;; input arguments
(:gimple g) ;; local formals
(debug "our g=" g) ;; do something with g

)

The definition of a c-iterator, in a defciterator, uses a state symbol (like
in code_chunk-s) and two “before” and “after” macro-strings, expanded in the
head and the tail of the generated C loop.

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 121 / 138

MELT handling GCC internal data with MELT

Example of defciterator

in xtramelt-ana-base.melt

(defciterator eachgimple_in_basicblock
(:basic_block bb) ;start formals
eachgimpbb ;state symbol
(:gimple g) ;local formals
;;; before expansion
#{ /* start $EACHGIMPBB */
gimple_stmt_iterator gsi_$EACHGIMPBB;
if ($BB)
for (gsi_$eachgimpbb = gsi_start_bb ($BB);

!gsi_end_p (gsi_$EACHGIMPBB);
gsi_next (&gsi_$EACHGIMPBB)) {

$G = gsi_stmt (gsi_$EACHGIMPBB);
}#
;;; after expansion
#{ } /* end $EACHGIMPBB */ }#

)

(most iterations in Gcc fit into c-iterators; because few are callbacks based)

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 122 / 138

MELT handling GCC internal data with MELT

values in Melt

Each value starts with an immutable [often predefined] discriminant
(for a Melt object value, the discriminant is its class).

discr

gimple

boxed gimple

3-tuple

discr

value 1

value 2

value 3

3 (length)

class

field 1

field 2

field 3

3
(#fields)

30017
(magic)

object

discr hd tl discr hd tl

pair pair

discr hd

pair

discr first lastlist

GCC MELT values

 hash 0x57de2f

Melt copying generational garbage collector manages [only] values
(it copies live Melt values into Ggc heap).

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 123 / 138

MELT handling GCC internal data with MELT

values taxonomy

classical almost Scheme-like (or Python-like) values:
1 the nil value () - it is the only false value (unlike Scheme)
2 boxed integers, e.g. ’2; or boxed strings, e.g. ’"ab"
3 symbols (objects of class_symbol), e.g. ’x
4 closures, i.e. functions [only values can be closed by lambda or defun]

(also [internal to closures] routines containing constants)
e.g. (lambda (f :tree t) (f y t)) has closed y

5 pairs (rarely used alone)

boxed stuff, e.g. boxed gimples or boxed basic blocks, etc . . .
lists of pairs (unlike Scheme, they know their first and last pairs)

tuples ≡ fixed array of immutable components
associative homogenous hash-maps, keyed by either

non-nil Gcc raw stuff like :tree-s, :gimple-s . . . (all keys of same type), or
Melt objects

with each such key associated to a non-nil Melt value
objects - (their discriminant is their class)

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 124 / 138

MELT handling GCC internal data with MELT

lattice of discriminants

Each value has its immutable discrimnant.
Every discriminant is an object of class_discriminant (or a subclass)

Classes are objects of class_class
Their fields are reified as instances of class_field

The nil value (represented by the NULL pointer in generated C code) has
discr_null_reciever as its discriminant.
each discriminant has a parent discriminant (the super-class for classes)

the top-most discriminant is discr_any_reciever
(usable for catch-all methods)

discriminants are used by garbage collectors (both Melt and Ggc!)
discriminants are used for Melt message sending:

each message send has a selector σ & a reciever ρ, i.e. (σ ρ ...)
selectors are objects of class_selector defined with defselector
recievers can be any Melt value (even nil)
discriminants have a :disc_methodict field - an object-map associating
selectors to methods (closures); and their :disc_super

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 125 / 138

MELT handling GCC internal data with MELT

C-type example: ctype_tree
Our c-types are described by Melt [predefined] objects, e.g.

;; the C type for gcc trees
(definstance ctype_tree class_ctype_gty
:doc #{The $CTYPE_TREE is the c-type

of raw GCC tree stuff. See also
$DISCR_TREE. Keyword is :tree.}#
:predef CTYPE_TREE
:named_name ’"CTYPE_TREE"
:ctype_keyword ’:tree
:ctype_cname ’"tree"
:ctype_parchar ’"MELTBPAR_TREE"
:ctype_parstring ’"MELTBPARSTR_TREE"
:ctype_argfield ’"meltbp_tree"
:ctype_resfield ’"meltbp_treeptr"
:ctype_marker ’"gt_ggc_mx_tree_node"

;; GTY ctype
:ctypg_boxedmagic ’"MELTOBMAG_TREE"
:ctypg_mapmagic ’"MELTOBMAG_MAPTREES"
:ctypg_boxedstruct ’"melttree_st"
:ctypg_boxedunimemb ’"u_tree"
:ctypg_entrystruct ’"entrytreemelt_st"

:ctypg_mapstruct ’"meltmaptrees_st"
:ctypg_boxdiscr discr_tree
:ctypg_mapdiscr discr_map_trees
:ctypg_mapunimemb ’"u_maptrees"
:ctypg_boxfun ’"meltgc_new_tree"
:ctypg_unboxfun ’"melt_tree_content"
:ctypg_updateboxfun ’"meltgc_tree_updatebox"
:ctypg_newmapfun ’"meltgc_new_maptrees"
:ctypg_mapgetfun ’"melt_get_maptrees"
:ctypg_mapputfun ’"melt_put_maptrees"
:ctypg_mapremovefun ’"melt_remove_maptrees"
:ctypg_mapcountfun ’"melt_count_maptrees"
:ctypg_mapsizefun ’"melt_size_maptrees"
:ctypg_mapnattfun ’"melt_nthattr_maptrees"
:ctypg_mapnvalfun ’"melt_nthval_maptrees"
)

(install_ctype_descr
ctype_tree "GCC tree pointer")

The strings are the names of generated run-time support routines (or types, enum-s, fields . . .)
in $GCCMELTSOURCE/gcc/melt/generated/meltrunsup*.[ch]

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 126 / 138

MELT handling GCC internal data with MELT

Melt objects and classes
Melt objects have a single class (class hierarchy rooted at class_root)
Example of class definition in warmelt-debug.melt:
;; class for debug information (used for debug_msg & dbgout* stuff)
(defclass class_debug_information
:super class_root
:fields (dbgi_out dbgi_occmap dbgi_maxdepth)
:doc #{The $CLASS_DEBUG_INFORMATION is for debug information output,

e.g. $DEBUG_MSG macro. The produced output or buffer is $DBGI_OUT,
the occurrence map is $DBGI_OCCMAP, used to avoid outputting twice the
same object. The boxed maximal depth is $DBGI_MAXDEPTH.}#
)

We use it in code like
(let ((dbgi (instance class_debug_information

:dbgi_out out
:dbgi_occmap occmap
:dbgi_maxdepth boxedmaxdepth))

(:long framdepth (the_framedepth))
)

(add2out_strconst out "!!!!****####")
;; etc

)

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 127 / 138

MELT handling GCC internal data with MELT

Melt fields and objects

Melt field names are globally unique
⇒ (get_field :dbgi_out dbgi) is translated to safe code:

1 testing that indeed dbgi is instance of class_debug_information, then
2 extracting its dbgi_out field.

(⇒ never use unsafe_get_field, or your code could crash)

Likewise, put_fields is safe
(⇒ never use unsafe_put_fields)

convention: all proper field names of a class share a common prefix
no visibility restriction on fields
(except module-wise, on “private” classes not passed to export_class)

Classes are conventionally named class_*

Methods are dynamically installable on any discriminant, using
(install_method discriminant selector method)

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 128 / 138

MELT matching GCC data with MELT

About pattern matching
You already used it, e.g.

in regular expressions for substitution with sed

in XSLT or Prolog (or expert systems rules with variables, or formal symbolic computing)

in Ocaml, Haskell, Scala

A tiny calculator in Ocaml:

(*discriminated unions [sum type], with cartesian products*)
type expr_t = Num of int

| Add of expr_t * expr_t
| Mul of expr_t * expr_t ;;

(*recursively compute an expression thru pattern matching*)
let rec compute e = match e with

Num x → x
| Add (a,b) → a + b
(*disjunctive pattern with joker _ and constant sub-patterns::*)
| Mul (_,Num 0) | Mul (Num 0,_) → 0
| Mul (a,b) → a * b ;;

(*inferred type: compute : expr_t → int *)

Then compute (Add (Num 1, Mul (Num 2, Num 3)))⇒ 7

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 129 / 138

MELT matching GCC data with MELT

Using pattern matching in your Melt code

code by Pierre Vittet

(defun detect_cond_with_null (grdata :gimple g)
(match g ;; the matched thing

(?(gimple_cond_notequal ?lhs
?(tree_integer_cst 0))

(make_tree discr_tree lhs))
(?(gimple_cond_equal ?lhs

?(tree_integer_cst 0))
(make_tree discr_tree lhs))

(?_
(make_tree discr_tree (null_tree))))))

lexical shortcut: ?π ≡ (question π), much like ’ε ≡ (quote ε)

patterns are major syntactic constructs (like expressions or bindings are;
parsed with pattern macros or “patmacros”), first in matching clauses
?_ is the joker pattern, and ?lhs is a pattern variable (local to its clause)

most patterns are nested, made with matchers, e.g.
gimple_cond_notequal or tree_integer_const

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 130 / 138

MELT matching GCC data with MELT

What match does?

syntax is (match ε κ1 . . . κn) with ε an expression giving µ and κj are
matching clauses considered in sequence
the match expression returns a result (some thing, perhaps :void)
it is made of matching clauses (πi εi,1 . . . εi,ni ηi), each starting with a
pattern47 πi followed by sub-expressions εi,j ending with ηi

it matches (or filters) some thing µ
pattern variables are local to their clause, and initially cleared
when pattern πi matches µ the expressions εi,j of clause i are executed in
sequence, with the pattern variables inside πi locally bound. The last
sub-expression ηi of the match clause gives the result of the entire match
(and all ηi should have a common c-type, or else :void)
if no clause matches -this is bad taste, usually last clause has the ?_
joker pattern-, the result is cleared
a pattern πi can match the thing µ or fail

47expressions, e.g. constant litterals, are degenerate patterns!
Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 131 / 138

MELT matching GCC data with MELT

pattern matching rules

rules for matching of pattern π against thing µ:
the joker pattern ?_ always match
an expression (e.g. a constant) ε (giving µ′) matches µ iff (µ′ == µ) in C
parlance
a pattern variable like ?x matches if

x was unbound; then it is bound (locally to the clause) to µ
or else x was already bound to some µ′ and (µ′ == µ) [non-linear patterns]
otherwise (x was bound to a different thing), the pattern variable ?x match fails

a matcher pattern ?(m η1 . . . ηn π′
1 . . . π

′
p) with n ≥ 0 input argument

sub-expressions ηi and p ≥ 0 sub-patterns π′j
the matcher m does a test using results ρi of ηi ;
if the test succeeds, data are extracted in the fill step and each should
match its π′j
otherwise (the test fails, so) the match fails

an instance pattern ?(instance κ :φ1 π′
1 ... :φn π′

n)
matches iff µ is an object of class κ (or a sub-class) with each field φi
matching its sub-pattern π′

i

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 132 / 138

MELT matching GCC data with MELT

control patterns

We have controlling patterns
conjonctive pattern ?(and π1 . . . πn) matches µ iff π1 matches µ and
then π2 matches µ . . .
disjonctive pattern?(or π1 . . . πn) matches µ iff π1 matches µ or else
π2 matches µ . . .

Pattern variables are initially cleared, so (match 1 (?(or ?x ?y) y))
gives 0 (as a :long stuff)

(other control patterns would be nice, e.g. backtracking patterns)

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 133 / 138

MELT matching GCC data with MELT

matchers

Two kinds of matchers:
1 c-matchers giving the test and the fill code thru expanded macro-strings

(defcmatcher gimple_cond_equal
(:gimple gc) ;; matched thing µ
(:tree lhs :tree rhs) ;; subpatterns putput
gce ;; state symbol
;; test expansion:
#{($GC &&

gimple_code ($GC) == GIMPLE_COND &&
gimple_cond_code ($GC) == EQ_EXPR)

}#
;; fill expansion:
#{ $LHS = gimple_cond_lhs ($GC);

$RHS = gimple_cond_rhs ($GC);
}#)

2 fun-matchers give test and fill steps thru a Melt function returning
secondary results

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 134 / 138

MELT current and future work on MELT

Recent MELT improvements

Many bug fixes
0.9.3 (january 2012) and earlier in late 2011

define macro à la Scheme
cloning of values :
(clone_with_discriminant old-val new-discr) whose
implementation is generated
debugging closure with
(clone_with_discriminant (lambda ...) discr_debug_closure)

walking SSA use-def chains
much more GCC plugin hooks interfaced to MELT
more MELT runtime code generated

MELT 0.9.4 (march 2012)

cheader macro to emit header C-code, e.g.
(cheader #{#include <readline/readline.h>}#)
all hash maps have some auxiliary data value
all generating devices emit code in a never-called syntax checking C
function, to catch errors in macro-strings

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 135 / 138

MELT current and future work on MELT

Recent MELT improvements (2)

Many bug fixes
MELT 0.9.5 (april 2012)

$(sub s-epxr) and $[seq s-expr] syntax in macro-strings
asynchronous input channels with SIGIO signal;
signal handling in MELT at safe points (MELT applications, iterations...)
emitted C code is C++ compatible (since second-stage gcc-4.7 is
compiled by g++)
much more c-matchers and primitives for GCC stuff

MELT 0.9.6 (to be released end of may 2012)

signal support for SIGIO,SIGALRM,SIGCHLD -only in MELT code;
centisecond real-time clock and timers
GTKmm probe communicating with MELT
even more c-matchers, primitives, functions for GCC stuff
less brittle installation
?? variadic diagnostic functions for warning or error report
?? support for using external libraries from MELT extension

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 136 / 138

MELT current and future work on MELT

known MELT weaknesses [corrections are worked upon]

1 pattern matching translation is weak48

(a new pattern translator is nearly completed)
2 Melt passes can be slow

better and faster Melt application
memoization in message sends
optimization of Melt G-C invocations and Ggc invocations

3 variadic functions exist, but not enough used (e.g. for error and warning
reports)

4 dump support exist, but not well used
5 a probe process: asynchronous communication with a GTK probe
6 OpenMP specific Gimple not yet supported
7 not all Tree-s are supported yet
8 lack of real LTO support

48Sometimes crashing the Melt translator /
Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ? 137 / 138

MELT current and future work on MELT

Exercice

Code a Melt pass counting calls to a given function with null argument ,

Basile STARYNKEVITCH GCC Internals & MELT extensions (tutorial) may 10th 2012 (LIP6) ♠ 138 / 138

	introduction
	disclaimer & audience
	overview on GCC & MELT
	extending GCC
	installing and using MELT

	simple MELT examples
	Counting functions in your C code
	Showing the GCC pass names
	Searching function signature by matching

	GCC Internals
	complexity of GCC
	overview inside GCC (cc1)
	memory management inside GCC
	optimization passes
	plugins

	MELT
	why MELT?
	handling GCC internal data with MELT
	matching GCC data with MELT
	current and future work on MELT

