
customizing GCC with MELT
(a Lispy dialect)

Basile STARYNKEVITCH
gcc-melt.org

basile@starynkevitch.net or basile.starynkevitch@cea.fr

CEA, LIST (Software Reliability Lab.), Palaiseau, France
[within Université Paris Saclay]

January, 31st, 2015,
FOSDEM 2015, Lisp Dev Room, (Brussels, Belgium)

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 1 / 44

http://gcc-melt.org/
mailto:basile@starynkevitch.net
mailto:basile.starynkevitch@cea.fr


Overview

1 Introduction

2 The MELT language

3 The MELT [meta-] plugin implementation

4 Conclusion

Slides available online at gcc-melt.org
under (Creative Commons Attribution Share Alike 4.0 Unported license)

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 2 / 44

http://gcc-melt.org


Caveat
All opinions are mine only

I (Basile) don’t speak for my employer, CEA (or my institute LIST)
I don’t speak for the GCC community
I don’t speak for anyone else
My opinions may be highly controversial
My opinions may change

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ♠ 3 / 44



Introduction

1 Introduction

2 The MELT language

3 The MELT [meta-] plugin implementation

4 Conclusion

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 4 / 44



Introduction

Introduction (audience)

Expected audience (FOSDEM2015 Lisp devroom) :
familiar with some Lisp-like language (Common Lisp, Scheme, Clojure, Emacs
Lisp, . . . ), and with Linux or some Posix
so able to code a toy Lisp evaluator in Lisp
free-software friendly and knowledgable
sometimes using the Gcc1 compiler
(e.g. to build your favorite Lisp implementation runtime from its source code)
so knowing a little bit the C (or C++) programming language
(knowledge of gcc internals is not pre-supposed)

1Gnu Compiler Collection, no more Gnu C Compiler !
Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 5 / 44



Introduction

Introduction (Gcc vs LLVM)

I don’t know LLVM internally!
GCC (GNU compiler collection http://gcc.gnu.org/)

GNU, so GPLv3+ licensed (mostly) and FSF copyrighted (was initiated by
R.M. Stallman)
compile many source languages (C, C++, Obj.C, D, Go, Fortran, Ada, . . . )
compile for a lot of target processors and systems
still (usually) producing slightly faster code (when optimizing) than LLVM
legacy code base, now C++, active community and software
extensible thru plugins
gcc-5.0 (spring 2015) : 5.4MLOC (D.Wheeler sloccount, 225 M.US$) or
≈ 14.5MLOC, 86Mb .tar.bz2

Clang/LLVM http://llvm.org/ 3.6
non-copyleft (BSD-like) license (so Apple is rumored to have proprietary variants);
originated by C.Lattner (genuine C++)
a library libllvm (2.6MLOC) with a C/C++/Obj.C front-end clang (1.6MLOC)
with Clang compiles faster than Gcc
more modern design, active community
less frontends (but newer standards) and backends than Gcc
rumored to be easier to extend

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 6 / 44

http://gcc.gnu.org/
http://www.phoronix.com/scan.php?page=news_item&px=MTg3OTQ
http://llvm.org/
http://www.phoronix.com/scan.php?page=news_item&px=MTg3OTA


Introduction

Introduction (Gcc plugins)

Gcc is extensible thru plugins (≈ since gcc-4.5 in april 2010)

plugins should be free software2, GPL compatible
there is (in principle) no stable API for plugins : A GCC 4.9 plugin should
be improved to work with GCC 5.0
the Gcc compiler gives some plugin hooks
plugins cannot enhance the source language (e.g. add a new
front-end) or the target processor (new back-end)
plugins can add optimization passes and new attributes, pragmas, . . .
but very few Gcc plugins exist

gcc-5 also provides a libgccjit (Just-In-Time code generation library by
D.Malcolm), also usable AOT like libllvm; LLVM always got a “JIT”

2The GCC runtime library exception
https://www.gnu.org/licenses/gcc-exception-3.1.en.html forbids compilation of
proprietary software with a non-free plugins, but IANAL; in the previous century GCC has been
hurt by extensions feeding proprietary tools that made FSF and many people unhappy.

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 7 / 44

https://www.gnu.org/licenses/gcc-exception-3.1.en.html


Introduction

Introduction (job of a compiler)

A compiler is working on internal representations

Gcc is mostly working on [various] internal representations of the user code
it is currently compiling, much like a baker is kneading dough or pastry.
(so the job of a compiler is mostly not parsing or machine code emission)

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 8 / 44

http://pixabay.com/fr/p%C3%A2te-p%C3%A9trir-les-mains-cuire-3468/


Introduction

Introduction (gcc & g++ drivers, cc1 etc...)

The gcc or g++ 3 are driver programs. They are starting
cc1 (for C) or cc1plus ... for the compiler proper (includes
preprocessing), emitting assembly code.
as for the assembler
lto1 for Link Time Optimization
the ld or gold linker 4

the collect2 specific linker (creating a table of C++ constructors to be called for
static data)

Run g++ -v instead of g++ to understand what is going on.

GCC plugins are dlopen-ed by cc1, cc1plus, lto1 . . . So GCC “is
mostly” cc1plus, or cc1, or g951, or gnat1, etc...

3And also gccgo for Go, gfortran for Fortran, gnat for Ada, gdc for D, etc...
4LTO may use linker plugins.

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 9 / 44



Introduction

Introduction (inside cc1plus)

libiberty
utilities

pass
manager

other
utilities

foo.c le
xe

r,
 p

re
p
ro

c

to
ke

n
s

p
a
rs

e
r

g
e
n
e
ri

c 
tr

e
e
s

g
im

p
lifi

e
r

g
im

p
le

s

simple
gimple
passes

g
im

p
le

s 
..
.

cf
g
, 
ss

a
, 
..
.

inter-
procedural

gimple
passes

front-end middle-end

R
T
L 

g
e
n
e
ra

to
r

RTL

RTL
optim.
passes

RTL
register allocator
instr. scheduler
peephole optim.

RTL passesa
sm

 e
m

it
te

r

RTL
back-end

foo.s

cc1 [+
]

overview

Ggc
Gcc Garbage

 Collector

your own

pass in MELT

MELT
translator 
& runtime

bar.cc

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 10 / 44



Introduction

Introduction (importance of optimizations)

current processors (multi-core, out-of-order, pipelined, superscalar,
branch prediction, many caches5) are very complex, not like processors
(68K, Sparc, i386) of 198x-s, and increasingly far from the naive C
computer model!
current languages standards evolved too and “require” strong
optimizations, e.g. in C++11

#include <vector>
#include <algorithm>
int indexgreater(const std::vector<int>& a, int x) {
return std::find_if (a.begin(), a.end(),

[&](int u){return u>x;})
- a.begin(); }

is expected to be optimized without any calls.
(the recent C++ standards are “impossible” without optimizations)

5A cache miss requiring access to RAM lasts ≈ 300 cycles or machine instructions!

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 11 / 44

http://en.wikipedia.org/wiki/C++11


Introduction

Introduction (significant features of Gcc)

poor man’s (mark and sweep) garbage collector ggc
(does not handle local pointers! explicitly triggered, e.g. between passses; some GC-ed
data is explicitly freed / )

(a dozen of) specialized C++ code generators (e.g. gengtype for ggc
generates marking routines from GTY annotations)

many (≈ 290) optimization passes (some very specialized, e.g. for strlen);
see gcc/passes.def

≈ 2000 C++ GTY-ed data types inside the compiler, but...
Generic Tree-s = abstract syntax tree ≈ S-expressions ; (≈ 223
DEFTREECODE in gcc/tree.def)

Gimple-s = often 3 addresses instructions (like x = y + z;) whose
operands are trees : (41 DEFGSCODE in gcc/gimple.def)

some “hooks” between compiler layers (front-end, middle-end, back-end)

code base growing by ≈ 3% each year
no introspection (à la GIRL in GTK)

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 12 / 44



Introduction

Introduction (Why customize Gcc?)

Gcc customization (thru plugins in C++ or extensions in Melt) can be useful for:
validation of ad-hoc coding rules like

1 pthread_mutex_lock and pthread_mutex_unlock should be
balanced and occur in the same function

2 every call to fork should keep it result and test for > 0 or = 0 or < 0
3 call to fopen should test against failure in the same routine

Such rules are API or industry specific (no free-software Coverity™ -like tool)

fine-grained API or domain- specific typing, e.g. of variadic routines :
Gcc and libc already knows about snprintf thru some
attribute((format(printf,3,4))); But JANSSON library would like more
type checks on its json_pack and GTK would be happy with a checked
g_object_set

API or domain- specific optimizations, e.g. fprintf(stdout,...) ⇒
printf(...)

profit of the hard work of the compiler in other tools, e.g. emacs or IDEs

whole-project metrics and (unsound or incomplete) analysis

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 13 / 44

http://www.coverity.com/


Introduction

Introduction (Why Melt ?)

Embedding an existing “scripting” language (Ocaml, Python6, Guile, Lua, Tcl,
Javascript7 . . . ) inside current Gcc is “impossible” and unrealistic:

hand-coding the glue code is a huge work, incompatible with the
steady evolution of Gcc
(originally, I tried to glue Ocaml into Gcc for Frama-C, an LGPL static C source
code prover and analyzer)

generating the glue code automatically is not achievable
(heterogeneity and legacy of coding styles inside Gcc)

difficult interaction between Ggc (the Gcc garbage collector) and the
embedded language memory management

But Gcc customization needs expressivity, notably pattern matching on Gcc
internal representations, homoiconic meta-programming and some
efficiency

6See D.Malcolm’s GCC Python Plugin on
https://git.fedorahosted.org/cgit/gcc-python-plugin.git

7See Mozilla’s abandoned TreeHydra
Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 14 / 44

http://frama-c.com/
https://git.fedorahosted.org/cgit/gcc-python-plugin.git
https://developer.mozilla.org/en-US/docs/Treehydra


Introduction

Introduction (Features of Melt)

NB: Melt was/is incrementally designed and implemented

free software meta-plugin : GPLv3+ licensed, FSF copyrighted
Lisp-like syntax and semantics (might have made it less attractive)

efficient generational copying garbage collector above Ggc
(values are born in a new region, later copied -when old enough- to Ggc heap)

handle both first-class (Lisp-like) values and native unboxed Gcc stuff
(like gimple, basic_block, tree, edge or long etc . . . )

evolves with Gcc8; in practice a release of Melt (1.1) can be built on two consecutive
Gcc releases (e.g. Gcc 4.8 & 4.9)

pattern-matching on both Gcc stuff and Melt values
translated to (Gcc & Ggc friendly, dynamically compiled and dlopen-ed) C++ code
can mix C++ and Melt

meta-programming thru Lisp-inspired macros
reflective

8Following and adapting Melt to Gcc is labor-intensive
Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 15 / 44



The MELT language

1 Introduction

2 The MELT language

3 The MELT [meta-] plugin implementation

4 Conclusion

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 16 / 44



The MELT language

Hello World in MELT ,

No display (à la Scheme), no format (à la Common Lisp), but shamefully ,

(let ( (two (+ 1 1)) ; a stuff
)

(code_chunk hello_chk #{ // in $HELLO_CHK
printf("hello world from $HELLO_CHK, two = %ld\n", $TWO);

}#))

When running, you get something like

hello world from HELLO_CHK001, two = 2

C or C++ code chunks can be mixed with Melt.
The “state symbol” hello_chk gets “gensym”-ed at code chunk expasion
into C++ code.
The locally let-bound variable two is a stuff (translated to some unboxed
long C++ data), and in the code chunk $TWO is expanded to it.

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 17 / 44



The MELT language

MELT values vs stuff !

MELT brings you dynamically typed values (à la Python, Scheme, Javascript):
nil (is false), or boxed { strings, integers, Tree-s, Gimples, ...}, closures,
tuples, lists, pairs, objects, homogeneous hash-tables . . .
garbage collected by MELT using copying generational techniques (old
generation is GTY-ed Ggc heap)
quick allocation, favoring very temporary values
first class citizens (every value has its discriminant - for objects their Melt class)

But Gcc stuff can be handled by MELT: raw Gcc tree-s, gimple-s, long-s,
const char* strings, etc . . .

Local data is garbage-collected9 (values by MELT GC, stuff only by Ggc)

Type annotations like :long, :cstring , :edge or :gimple . . . or :value
may be needed in MELT code (but also :auto à la C++11)

9Forwarding or marking routines for locals are generated!
Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 18 / 44



The MELT language

Values in MELT

discr

gimple

boxed gimple

3-tuple

discr

value 1

value 2

value 3

3 (length)

class

field 1

field 2

field 3

3 
(#fields)

30017 
(magic)

object

discr hd tl discr hd tl

pair pair

discr hd

pair

discr first lastlist

GCC MELT values

 hash 0x57de2f

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 19 / 44



The MELT language

Some MELT language features

expression-based language

local variable bindings with let or letrec

named defun and anonymous with lambda functions closures

Smalltalk-like object system defclass, defselector, instance w. dynamic
method dictionnary (inside classes or discrimants)

iterative constructs forever, exit, again, . . . (but no tail-recursion)

pattern matching with match (patterns with ?, so ?_ is wildcard catch-all pattern)

dynamic evaluation w. eval, quasi-quotation backquote ≡ ‘ & comma ≡ ,

macros with defmacro or local :macro binding in let

conditionals with if, cond, when, unless, or, and, gccif (testing version of Gcc)

multiple data results in function return and multicall

many ways to mix C++ code with Melt code: code_chunk, expr_chunk and
defining C++ generations defprimitive, defcmatcher, defciterator

environment introspection parent_module_environment and
current_module_environment_reference

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 20 / 44



The MELT language

the bizarre quote in MELT

As in every Lisp, ’2 is syntactic sugar for (quote 2)

Nobody codes like that ’2 in Lisp, but I do code like that in MELT

Remember: stuff 6= values (but both are Melt “things”), hence the evaluations

2→ the stuff 2 (in C++, a raw unboxed (long)2)

’2→ the value 2 (in C++, a pointer to an allocated struct meltvalue_t....) of
discriminant discr_constant_integer managed by the Melt garbage collector, so can
be forwarded, when old enough, to the Ggc heap!

"hello"→ the stuff C-string (in C++, a raw unboxed (const char*)"hello")

’"hello"→ the allocated value string hello of discr_string
’if→ an interned symbol value, of discriminant class_symbol
’(f x)→ an s-expr value of discriminant class_sexpr (with two fields
:loca_location -some source file location- and :sexp_contents -a list of 2 pairs-)

So in MELT ’2 6≡ 2 , unlike in every other Lisp

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 21 / 44



The MELT language

Defining primitives in MELT

A “primitive” is defined by giving the formals (with their types) and the type of
the result, then the macro-string giving its C++ equivalent:

;; primitive to compute the length of a cstring
(defprimitive cstring_length (:cstring cstr) :long

:doc #{Compute safely the length a C-string $CSTR. Gives 0 if null.}#
#{(($CSTR)?strlen($CSTR):0)}#)

Don’t forget to be safe in primitives, code chunks, etc...

Notice the “keyword” annotations like :cstring for typing things. A
documentation is generated using :doc annotations.

In formal argument lists, a ctype annotation applies to further formals. Initial
formal ctype is of course :value. Default let binding ctype is :auto

MELT is statically typed for stuff and dynamically typed for values

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 22 / 44



The MELT language

How + is defined in MELT?

(defprimitive +i (:long a b) :long
:doc #{Integer binary addition of $a and $b.}#

#{(($a) + ($b))}#)

Then + is a variadic macro expanded to invoking +i

(in fact it is a bit more complex).

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ♠ 23 / 44



The MELT language

Defining functions in MELT

Common Lisp like syntax:

(defun multiple_every (tup f)
:doc #{Apply to every component of tuple $TUP and its index

the given function $F. Return nil.}#
(if (is_multiple tup)

(if (is_closure f)
(foreach_in_multiple ;; a C-iterator
(tup)
(comp :long ix)
(f comp ix)))))

MELT also accepts a Scheme like syntax to define functions
(define (multiple_every tup f) ... )

anonymous functions with lambda

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 24 / 44



The MELT language

Call protocol for fixed-arity functions

application of non-closure (e.g. objects) values (even reified primitives) gives nil
function applications give a primary result value and perhaps
secondary results (stuff or values)
first formal (if given) should be a value
first (actual) argument should also be a value or missing
other formals and arguments should have the same c-type
otherwise, all remaining formals are cleared
missing arguments bind their formals to a cleared thing

So, with

((lambda (v :long i j k) some-body )
:true 2 "not-a-long" 3)

inside some-body v is :true, i is 2, but both j and k are 0

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 25 / 44



The MELT language

variadic functions and loops

Use :rest in formals, and variadic form to dispatch and bind variadic
arguments by type. Often with forever loops.

(defun add2out (out :rest)
:doc #{Variadic function to add to an output $OUT various things. ...
Closure values are handled as manipulators for next thing.}#
(if (not (is_out out))

(return))
(forever argloop

(variadic
( () (exit argloop))
( (:value v)
(if (is_closure v)
(variadic
((:value vv) (v out vv))
((:long ll) (v out ll))

;; etc...

No way (yet) to accumulate variadic arguments or to apply them elsewhere!

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 26 / 44



The MELT language

antiquotations

syntactic sugar : ‘α ≡ (backquote α) and ,ε ≡ (comma ε) so is
analogue to ’ for quote.
Build a value, instance of class_sexpr nearly like ’(f x) did.

(let ( (qfx ’(f x))
(onetwo (tuple ’1 ’2)) )

‘(g ,qfx ,onetwo))

→ s-expr for (g (f x) 1 2)

Notice that in antiquotations (comma ε) may give several -or none-
expressions if ε is some sequence. So no need of ,@η

(antiquotations are useful for macros)

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 27 / 44



The MELT language

defining c-iterators
A c-iterator expands into an iterative construct (à la for in C or C++). We give
head and tail macro-string expansions.
(defciterator foreach_in_multiple
(tup) ;start formal
eachtup ;state symbol
(comp :long ix) ;local formals
:doc #{Iterate in the given tuple $TUP for each component $COMP
at index $IX}#
;; head or starting macrostring
#{ /* start foreach_in_multiple $EACHTUP */
long $EACHTUP#_ln = melt_multiple_length((melt_ptr_t)$TUP);
for ($IX = 0;

($IX >= 0) && ($ix < $EACHTUP#_ln);
$IX++) {

$comp = melt_multiple_nth((melt_ptr_t)($TUP), $IX);
}#
;; tail or ending macrostring
#{ if ($IX<0) break;
} /* end foreach_in_multiple $EACHTUP */ }#

)

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 28 / 44



The MELT language

pattern-matching example

Deciding if a C function should be processed by some analysis pass.
syntactic sugar : ?π ≡ (question π) for patterns

(defun meltframe_gate (pass)
(with_cfun_decl ()
(:tree cfundecl)
(match cfundecl

( ?(tree_function_decl_named
?(cstring_containing "meltgc_") ?_)

(return :true)
)

( ?(tree_function_decl_named
?(cstring_prefixed "meltrout_") ?_)

(return :true)
)

( ?_ (return ())))))

Notice that ?_ is the wildcard pattern or joker.
Patterns occur in match expressions. The syntax separates expressions,
patterns, let-bindings, formals, ...

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 29 / 44



The MELT language

defining a C-matcher

(defcmatcher tree_function_decl_named
(:tree tr) ;matched
;; output
(:cstring funame :tree trresult)
treefunam ;state symbol
:doc #{$TREE_FUNCTION_DECL_NAMED match a function declaration extracting
its name $FUNAME and result tree decl $TRRESULT}#

;; test expansion
#{ /* tree_function_decl_named $TREEFUNAM ? */
(($TR) && TREE_CODE($TR) == FUNCTION_DECL) }#
;; fill expansion
#{/* tree_function_decl_named $TREEFUNAM ! */
$FUNAME = NULL;
$TRRESULT = NULL;
if (DECL_NAME($tr))
$FUNAME = IDENTIFIER_POINTER(DECL_NAME($TR));

$TRRESULT = DECL_RESULT($TR); }#
)

Matching means testing if something fits, then destructuring it (filling step).
matchers can also be defined with MELT functions using defunmatcher

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 30 / 44



The MELT language

matching a C-string of given prefix

;; cmatcher for a cstring starting with a given prefix
(defcmatcher cstring_prefixed
(:cstring str cstr)
()
strprefixed
:doc #{The $CSTRING_PREFIX c-matcher matches a string $STR and test if
it starts with the constant string $CSTR. The match fails if $STR is a
null string or not prefixed by $CSTR.}#
;; test
#{/* cstring_prefixed $STRPREFIXED test*/
($STR && $CSTR && !strncmp($STR, $CSTR, strlen ($CSTR))) }#

;; no fill
)

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ♠ 31 / 44



The MELT language

Defining a MELT hook
Such hooks are not Gcc hooks, but just functions compiled as ordinary C++
functions callable from C++ code.
(defhook hook_handle_attribute
(:tree tr_in_node tr_name tr_args :long flags)
(:tree tr_out_node :long out_no_add_attrs)
:tree
:predef HOOK_HANDLE_ATTRIBUTE
(debug "hook_handle_attribute" " tr_in_node=" tr_in_node

"; tr_name=" tr_name "; tr_args=" tr_args
"; flags=" flags )

(let (
(attrv ())
)

(code_chunk getname_chk # /* hook_handle_attribute $GETNAME_CHK start */
melt_assertmsg ("check good name",

$TR_NAME
&& TREE_CODE($TR_NAME) == IDENTIFIER_NODE) ;

$ATTRV = melt_get_mapstrings
((meltmapstrings_st*) $GCC_ATTRIBUTE_DICT,
IDENTIFIER_POINTER($TR_NAME)) ;
/* hook_handle_attribute $GETNAME_CHK end */
#)

(debug "hook_handle_attribute " "attrv=" attrv)
;; etc ......

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ♠ 32 / 44



The MELT [meta-] plugin implementation

1 Introduction

2 The MELT language

3 The MELT [meta-] plugin implementation

4 Conclusion

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 33 / 44



The MELT [meta-] plugin implementation

MELT implementation overview (> 100KLOC)

runtime system:
1 melt-runtime.h : 3795 lines, common header, included in
2 melt-run.proto.h : includes Gcc plugin headers
3 melt-runtime.cc : 13260 lines

Melt generated parts of the runtime system:
1 melt/generated/meltrunsup.h: 2800 lines the various data structures
2 melt/generated/meltrunsup-inc.cc: 4638 lines, forwarding, copying,

etc...
the MELT (to C++) translator (63KLOC) in several phases:

1 parsing into S-exprs of class_sexpr
2 macro-expansion into AST, subclasses of class_source
3 normalization in A-normal form10, so (f (g x) y) is becoming almost

like (let ( (θ (g x)) ) (f θ y))
4 generation of C++-like AST, subclasses of class_generated_c_code
5 emission of C++ code

C++ generated for the translator (1737KLOC melt/generated/warmelt*.cc)

misc. (shell scripts and their generator)
10required by the copying Melt GC
Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 34 / 44

http://en.wikipedia.org/wiki/A-normal_form


The MELT [meta-] plugin implementation

a big lot of C++ generated code
Melt is designed so that every value (even closures) is computed at runtime.
(no “core image”11 à la sbcl.core like in most Lisp-s or in Ocaml)

a MELT “translation unit” or module is conceptually compiled into a C++
routine which takes a starting environment and returns a new environment.
The starting environment is accessible with (parent_environment). The
new current environment is contained in
(current_module_environment_reference). Both are instances of
class_environment defined as
(defclass class_environment
:predef CLASS_ENVIRONMENT
:super class_root
:fields (env_bind ;the map of bindings

env_prev ;the previous environment
env_proc ;the procedure of this environment

))

The compilation time of generated C++ code is the bottleneck
11This could be improved, using Gcc “PCH” techniques

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 35 / 44



The MELT [meta-] plugin implementation

various bindings

During the translation from MELT to C++, and in environments, symbols may
have various bindings of different sub-classes of class_any_binding.
The bound symbol is its :binder field.

class_value_binding, exported with export_values

class_primitive_binding for handling defprimitive, exported with
export_values

class_citerator_binding for handling defciterator, exported with
export_values

class_patmacro_binding for handling pattern-macros exported with
export_patmacro

class_macro_binding for macros (e.g. defined with defmacro), exported with
export_macro, or inside a let annotated with :macro

etc . . .

The handling of a symbol in operator position depends upon its bindings.
Symbols have lexical-scoped bindings.

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 36 / 44



The MELT [meta-] plugin implementation

metaprogramming and eval

metaprogramming (e.g. in defmacro-s and their invocation) is done
“semilazily”, like eval: each dynamic evaluation is done by generating C++
code and dlopen-ing it

C++ or C compilers are fast enough to be compatible with a
read-eval-print-loop

But meta-error handling is bad; some meta-errors are fatal. Could be
improved.

(eval expr [env]) is working well enough.

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 37 / 44



The MELT [meta-] plugin implementation

“signal” handling and “asynchronous” I/O

Notice that Gcc is absolutely not re-entrant; however, MELT provides
register_paragraph_input_channel_handler,
register_raw_input_channel_handler and
register_alarm_timer etc...: a file descriptor (e.g. socket or pipe) may
recieve s-expressiong which will be apparently processed asynchronously.
Actually, we are using SIGIO which sets a volatile flag tested using
MELT_CHECK_SIGNAL() emitted at many places12

In previous versions of MELT (1.0), we had a graphical GTK probe, but this is
too inconvenient (stops gcc).

Today: JSON RPC [server and] client abilities (e.g.
do_blocking_jsonrpc2_call & json_parser_input_processor)

Still missing: an external daemon and web interface, interacting with Gcc
using Melt, to keep (e.g. in some database?) extracted properties of the
compiled source code.

12generating C++ code makes that reasonably easy, like the support of a copying GC

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 38 / 44



The MELT [meta-] plugin implementation

code meta-data in parsed C code

Some meta-data is kept in C code (files *+meltdesc.c) like:

/* hash of preprocessed melt-run.h generating this */
const char melt_prepromd5meltrun[]="5bfc178c40b000dfbd23bbcb66857e91";
/* hexmd5checksum of primary C++ file */
const char melt_primaryhexmd5[]="b9b57cd8da15c812a5d8027af64166ee";

/* hexmd5checksum of secondary C++ files */
const char* const melt_secondaryhexmd5tab[]=
/*nosecfile*/ (const char*)0,
/*sechexmd5checksum warmelt-modes+01.cc #1 */ "c51b07cca977373ea3bc2a1f5ecbc1d3",
/*sechexmd5checksum warmelt-modes+02.cc #2 */ "10ef7730cb92c4d26656bc7cef0b748c",
/*sechexmd5checksum warmelt-modes+03.cc #3 */ "31ca48fea5dfba35b5e79ffa7ca5ea0e",
(const char*)0 ;

These files are compiled and parsed13 to check consistency of dlopen-ed
shared objects with their C++ counterparts.

13The parsing of these C files happens in the Melt runtime - some ccache flavor

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 39 / 44



The MELT [meta-] plugin implementation

various flavors of Melt binary modules

The same MELT is translated into C++ code (with lots of #line directives in
emitted C++) which is then compiled into binary module.

optimized modules: compiled with g++ -O2 -fPIC,(debug) ...) and
(assert_msg ...) expressions are disabled.

quicklybuilt modules: compiled with g++ -O0 -fPIC
-DMELT_HAVE_DEBUG, so (assert_msg ...) expressions are enabled.

debugnoline modules: compiled with g++ -g -fPIC -DMELT_HAVE_DEBUG
-DMELTGCC_NOLINENUMBERING so skipping #line

Melt is internally running some make to compile the generated C++ code.

(Actually, bootstrapping has N to M dependencies, with complex generated shell
scripts).

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 40 / 44



The MELT [meta-] plugin implementation

showing some code, etc...

Show code from xtramelt-ana-simple.melt

Complementary slides (much more Gcc focused):
GCC plugins thru the MELT example at Linux Foundation, march 2014

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 41 / 44

https://gcc.gnu.org/viewcvs/gcc/branches/melt-branch/gcc/melt/xtramelt-ana-simple.melt?view=markup
http://gcc-melt.org/gcc-plugin-MELT-LinuxCollabSummit2014.pdf


Conclusion

1 Introduction

2 The MELT language

3 The MELT [meta-] plugin implementation

4 Conclusion

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 42 / 44



Conclusion

Taking advantage of compilers for doing more

Both free software and the general software industry need more “static
analysis” tools which leverage on existing compilers.

we need (several) free-software source code analyzers
we need to formalize some coding rules
compilers and their extensibility can be tremendously useful for more
than compilation.
free software cannnot use only Coverity thru Github, it needs better free
software tools
special compilation mode “gcc -O∞” could profit from (slow) static
analysis

I am interested in getting more work funded with Melt (industrial contracts,
European collaborative research projects with DSL needs, etc...), or in similar approaches
in other compilers (e.g. adding some DSL in LLVM?)

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ? 43 / 44



Conclusion

questions? Thanks!

Basile Starynkevitch GCC MELT January 31st, 2015 (FOSDEM, Brussels) ♠ 44 / 44


	Introduction
	The MELT language
	The MELT [meta-] plugin implementation
	Conclusion

