QISH introduction

Basile STARYNKEVITCH
basi | e@t ar ynkevi t ch. net
nttp://ww. starynkevitch. net/ Basi | e/

8, rue de la Faencerie, 92340 Bourg La Reine, France

May 8, 2005

$Id: qishintro.tex 19 2005-05-08 17:35:50Z basile $

http://www.starynkevitch.net/Basile/

CONTENTS CONTENTS

Contents
[1__Shart overview 6
2_Requirements 6
r 7
3.1 Introductoryexamples 8
3.2 Datastructure of objefts 12
.3 required coding practi¢es 13
3.3.1 Nointeriorpointe¥s 13
332 Nomulti-threadidg 13
3.3.3 Limitedglobaldata 13
[3.3.4 Pointersarevolafile 14
i GC.......... 14
[3.3.6 No compasition of functionedlls 15
337 Completeallocatibn 16
[3.3.8 Naotification of updates (write barrier) 61
13.3.9 Optional explicit garbage collection 71
3.3.10 Exceptionhandlihg 17
3311 Utility routings 18
3.4 Mandatory routinestothe GC 19
i iomi shgccopypp 19
[3.4.2 _Minor scan of a movable objemi sh mi nor scanp . 20
13.4,3 Full scan of a movable objemtsh ful | scanp ... 20
[3.4.4 Fullscan of afixed objegi sh fixed scang 21
B.5_UsingQishinC++cofle 23
3.6 Advanced application explicit forwarding. 23
4 A tiny benchmarld 24
U1 benchmarkresuits 24
W2 TuningQish 25
| Lt ing?) 26

CONTENTS CONTENTS

Please be nice to send me an email if you use this informatidrttas Qish
software.

Qishis available froratt p: /77 www. st ar ynkevi t ch. net / Basi | e/ gi sh- 1. Oprel. tar. gz
(as a gnuzipped source tarball) and the latest snapshciis o1/ 7 www. st ar ynkevi t ch. net/ Basi | e/
and this documentis (it p: // www. st ar ynkevi t ch. net/ Basi [e/ gi shintro. ht m |
See also my home page bt p: /7 ww. st ar ynkevi t ch. net / Basi I e/] or Qish
pagenttp: //1reshmeat . net/ proj ect s/ gi sh/jon Freshmeat for announcement
of newer versions.

Documentation should be rewritten. Multithreading is ndtyf working yet
in version 0.9. Stay tuned.

A mailing list (not yet archived) is available gs sh@ i st s. api nc. org
send an emailtgi sh- subscri be@ i sts. api nc. orgortome abasi | e@t ar ynkevitch
for subscription.

Qish is developed on a PC/x86 running Linux. It could be guedo other
Unixes machindks Qish could be ported to x86 under Windows, but | don’t want
to do that.

To compile Qish on a strictly conforming ISO C 1999 compilse the DSTRI CT_C99
compile flaﬂ. But Qish requires that successful pointer arguments aa&tdd
consecutively (upwards or downwards) in memory (which is guaranteed or
even meaningful in general for ISO C 1999 compilers.).

The machine dependent parts of Qish are carefully codeddiuested else-
where. If you have access to other machine architecturaseleell me if you
succeeded in compiling, porting, and running this softwagesh requires that
successive pointer arguments and pointer fields are comggumemory.

Boehm’s conservative garbage collectohonip: 7 7 www. hpl . hp. conl per sonal / Hans Boehni gc/
should be easier to Weout does not compact memory, as any copying GC (like
Qish) does. See the sectibh 4 for a small (and not very signifidoenchmark
running both Boehm’s and Qish GC (and explicit malloc ané)re

This GC is not mostly copyirig It copies every movable object (even if it is
on the call stack - in that case the variable or argument shioellknown to our
GC thru theBEG N_LOCAL _FRANME or equivalent macro), and mark fixed objects
(which have finalizers).

This GC uses classical algorithrisspired by some A.Appel’'s papers and R.Lins

10n some machines you'll need to flush the register stack mh_gar bagecol | ect - for
example, Sparc machines might néed 3 to flush registers

2With this flag, Qish compiles without warnings both on Ggdc- 3. 2 with - pedant i ¢
-std=c99 andont cc - seehttp://tinycc.org/

3Boehm’s GC has an interface compatible withl | oc, is compatible with threads and final-
ization, and is used in GCC-3 for the Java runtime

4Unlike Bartlett's GC -1990- US patent 4,907,151 - thanks erd3Moellmann for the refer-
ence

http://www.starynkevitch.net/Basile/qish-1.0pre1.tar.gz
http://www.starynkevitch.net/Basile/qish-snapshot.tar.gz
http://www.starynkevitch.net/Basile/qishintro.html
http://www.starynkevitch.net/Basile/
http://freshmeat.net/projects/qish/
http://www.hpl.hp.com/personal/Hans_Boehm/gc/
http://tinycc.org/

CONTENTS CONTENTS

& R.Jones’ book) But | know of no other (classical) copying generational @€,
able for C, which can be customized to arbitrary data strestgwhile following
stringent coding rules). This GC is probably best suitedgenerated C code,
since the generator could be designed to follow every reduioding rules. A
code generator might use - (andQui ckC- - seehtt p: /7 Www. cm nusm nus. or g/)
when it will be available.

This GC is acopying precis€or exact) garbage collector. This means that
pointers are changed by the GC (which may be called at evirgation point).
The GC may change any (GC-managed) pointer on the call statindahe heap.
So you have to particularily be careful to tell the GC whereeach pointer on the
stacll and inside each object in the hapnd the GC might change any of them
(to the address of a fresh copy of the pointed object). Anadmepiler should not
optimiz@ too much (eg by putting a local variable only in a register reltae GC
can’t change it).

Qish should be portable to any Unix, provided that the C céenpnderstands
thevolatile keyword as meaning that the declared volatile pointer mashbeged
by the GC. Purists says that Qish does not target the full @jagE but only a
subset; this is true in the sense that specific coding styleqgired, and that the
compiler should understand thielatile keyword as above.

An alternative compiler on Linux i$ ccll on Rttp 77t RYES oF g Which
compiles extremely quickly (and is very suitable for dyneatly generated C
code using Qish and following Qish coding conventions). Yooy collectors
condemna region of memory then push all objects out of this regiondyyymg
them, forwarding the pointer to them, and changing all pto the new copy.

This GC is agenerationalgarbage collector. This means that the garbage col-
lector focus work on newer objects, assuming that they arglynmporary and
will die soon. This suggests or favors a programming styl vats of (usually
temporary) object allocations. So object allocation igejdast on the average.
But the garbage collector has to notice and scan explicitiyad object which
has been updated by the application to point to a newer objHuis require a
write barrier, i.e. the notification of object updates tiish_wri t e_not i fy.

SYou tell the GC where are the stack pointers with BEG N_LOCAL_FRAME or equivalent
macro, which tells the GC the number of local pointers, th& faf them, and the number of
argument pointers and the first such argument.

You tell the GC where are pointers inside heap objects byia#plproviding mandatory
routines(see sectiof34) to scan and copy such heap objects.

"This is why thevolatile keyword is required for arguments and for thecal s_ structure.

8But every GC, even conservative, for C requires some codyig, sisually much less restric-
tive than for Qish...

9Tcc don't optimise much and ignores thelatile keyword. The generated code is about 30%
slower than GCC with optimisation, but the compilation timesometimes ten times faster than
with gcc.

http://www.cminusminus.org/
http://tinycc.org

CONTENTS CONTENTS

Any precise garbage collector requires some coding coirenin C (to know
about pointers on the call stack, or for the write barrig¢r,examples include the
Ocaml runtime primitives coding conventions (B€€p: /7 cam . i nria.fr/ ocan / ht m nan/ nanual 0
section 18.5) or the Xemacs primitives coding conventiaer(t t p: // www. xemacs. or g/ Document at_

http://caml.inria.fr/ocaml/htmlman/manual032.html
http://www.xemacs.org/Documentation/21.5/html/internals_12.html

2 REQUIREMENTS

1 Short overview

Qish contains a reusable (i.e. rather generic) generatcmpgying garbage col-
lector usable from C. This garbage collector requires aqdar (and low-level)
coding style.

If this stuff is useful to you, be nice to send me an emdilasi | e@t ar ynkevi t ch. net.
The license of this software is the GNU Lesser General Pulitienseld (i.e.
LGPL - see the COPYING file); so this is a free or opensourcevswméit this license
annoys you, send me an email)

Why the name Qish? Qish was the father of Sal, see 1 Samug,fthe
Bible). I'm bored of finding useful acronyms (especially gdant in several Eu-
ropean languages), so | am using names from the Holy Bibléeast | hope that
Qishis not offensivd.

2 Requirements
To use this package, you need the following stulff:

e Ruby (for scripting) seet t p: /7 www. r uby- I ang. or g/ | don’t know much
Perl and prefer Ruby for scripting tasks

e a Glibc system such as GNU/Linux, etc... | am using a Linux iBetsid
system with a 2.4.22 kernel.

e The GNU make utility, since | depend upon GNU make extensiosese
htt p: // Www. gnu. or g/ sof t war e/ make/l. | am using make 3.80.

e The GNU GCC compiler version 3.3 or later (I recommend adgaissg
3.2, 3.1, 3.0 or 2.x versions) - SBEt p: / / Www. gnu. or g/ Sof t war e/ gcc/ .

e the Tiny CC compiler (by Fabrice Bellard) @mt p: /7t nycc. orgis very
useful to compile (perhaps generated) C code using Qisly@ounay com-
pile the runtime with GCC using optimisationg)cc 0. 9. 14 compiles
very quickly (sometimes 10 times faster than gcc 3.2) whitelpcing code
no more than 30% slower thgtc - C3.

e This documentation is processed with LaTeX and HeVeA. Helgeshgood
LaTeX to HTML translator. See http://para.inria.fr/ magetrhevea/ It is
written in Ocaml. Segtt p: /7 www. ocan . or g/

10t used to be GPL only.
n the past | experimented on a reflexive system that | alsceda@ish - they have no much
in common except the name and the author

http://www.ruby-lang.org/
http://www.gnu.org/software/make/
http://www.gnu.org/software/gcc/
http://tinycc.org
http://www.ocaml.org/

3 THE GARBAGE COLLECTOR

e | amusing PRCS for version control. Siga p: 7/ prcs. sour cef or ge. net/].
But it is only needed in thescri pt s/ gi sh_snap Ruby script. You
should not need it otherwise.

3 The garbage collector

A garbage collector (or GC) manage resources (mostly memibggou are not fa-
miliar with garbage collection, see R.Jones’s GC pag@oR: / / www. cS. UKC. ac. uk/ peopl e/ staft/
and alscnt t p: 7/ www. menor ynanagenent . or g. In this document, an object is
just a memory zone managed by the GC; it may be or not an objgitiesto
your application. All pointers to this object points to thars of the object and are
managed by the GC. A word may contain a pointer or some kindtefer. On
x86, words are 4 byte long.

A copyingGC moves objects. The advantage of moving objects is theitige
dead objects is easy; alive objects are moved outside a Inig, 2nd then this
big zone is freed at once. So dead objects are not reclaimetyone. Also, a
copying GC do compact the used memory (but need temporatitg tas much as
memory), thus avoiding fragmentation. $minters are changeby the copying
GC. Therefore, all object pointers av®l at i | e for the C compiler, and the
garbage collector needs to knalout every (garbage collected) pointer

A generationalGC favors young objects. It separate objects in old and new
regions, and do two kinds of garbage collections (minor aiyl {Objects are lin-
early allocated in a birth zone. When this zone is fullpimor garbage collection
is trigerred, which copy alive born object into tblkel region. Once in a while full
garbage collections done, by condemning the previous old region and copying
alive old objects into a fresher old region (and also worlanghe birth zone like
the minor GC does). Care should be taken about pointers figetbin the old
region to the new birth one. So every object modification (whepointer field
in an object is changed) should be explicitly notified to thé. @llocation in our
GC is much faster (in the usual case, when no garbage colteistineeded) than
a cheap call to aal | oc like routine.

Our GC also providefinalized fixed objectsSuch objects are not moved, and
are explicitly destroyed (one by one) by the GC, which cafla@ization routine.
Finalized objects are more costly than copied ones. Thentaeded to manage
external system resources like files or windows. The finatmaroutine should
not use or change garbage collected pointers or fields (ekgegearing them).
Our finalized objects are not like Java’s in that respectfittaizer routine cannot
allocate any GC-ed object!

Our GC also supports tagged integers. Any pointer word endiith a set
LSB bit is assumed to be such an integer. Usegtheh_i s_t agged_i nt in-

http://prcs.sourceforge.net/
http://www.cs.ukc.ac.uk/people/staff/rej/gc.html
http://www.memorymanagement.org

3.1 Introductory examples 3 THE GARBAGE COLLECTOR

lined function to test if a pointer is such a tagged inteddt.i$ one, you can con-
vertittoi nt orl ong withtheQ SH _TAGGED2I NT andQ SH_TAGGED2LONG
macros. To make a tagged integer (ie to encode integers in-ad3®inter) use
theQ SH_| NT2TAGGED or Q SH_LONG2TAGGED macros.
Qish provides global constant pointers (up to 65536 pashtéiseQ SH.GLOBCONST(N)
to get theN-th constant, an@ SH.SET_GLOBCONST(N,V) to set theN-th con-
stant to the pointer valué.
Qish also provides module constant garbage collected grsirfbne pointer
per module).

3.1 Introductory examples

Notice: examples talk about Ruko which is obsolete.

To give a concrete feeling about Qish runtime, here are stiosrative ex-
amples from Ruko. Ruko provides (among other types) veeitodsuples, which
are sequences of garbage-collected object pointers. rgamte® mutable (the com-
ponentssect - >t ab can be changed) but tuples are immutable (the components
are set at creation time and then are read-only).

The filer uko/ r uko. h declare the following structure (common to vectors
and tuples):

struct ktuplet {

unsi gned header; // first word is a common discriminating
header

voi d* tab[0]; // nextwords are GC-ed object pointers

¥

Theheader word encodes both a kind (which K ND_-TUPLE for a tuple
andKIl ND_VECTOR for a vector) and a size - which for vectors and tuples is the
number of components, i.e. the real length of et - >t ab field. But other
uses of Qish have their first word containing a garbage-ci@tton-nullpointer
to a class object.

Here is the commented code (from fileko/ r uko. c) of ther uk_dup_vect or
function, which duplicate a source tuple or vector as a freshly allocated vec-
tor, initialized with the same components as those of thecgouThis function
returns a garbage collected pointer:

struct ktuplet*
ruk_dup_vector(struct ktuplet* volatile vec) { //
volatile arguments!

3.1 Introductory examples 3 THE GARBAGE COLLECTOR

Itis mandatory that all garbage collected argument pasrgkould be declared
volatile as above, because the GC may move (i.e. changepsuders. Also, all
garbage collected argument pointers should be consecutive

struct ktuplet* volatile tup=0;
/' local variablet up is alsovolatile
int kd=0; int len=0; int i=0;

We have one single local garbage collected pointgy (which will hold the
result of the function). Since it is alone we just declareoitatile and initialize it
to 0. If we had several local GC-ed pointers (or even one ah)hee would pack
them inside a volatile structure, conventionally namledcal s_and also initial-
ized to all 0. It is important that all local GC-ed pointergighles are volatile,
consecutive, and initialized to 0 (or a valid GC-ed pointét)s a good habit to
initialize every local variables, even the plaint ones.

/I mandatory start of GC-ed frame

BEG N.SI MPLE_FRAMVE(1, vec, 1, tup);

/| we have 1 garbage collected argument startingvagc
/'l we have 1 GC-ed local pointer starting d@tup

The call to the (deprecat®EG N_SI MPLE_FRANME macro, or) BEG N_LOCAL _FRAME
when using thel ocal s_structure) is mandatory. It indicates to the GC the num-
ber of garbage collected pointer arguments, and the fir$t atgument, and the
number of garbage collected local pointers, and the firsh guinter. The ex-
panded C code registers a GC frame (in a linked-list of frahresdled by the
GC) and executes in a small constant time. BE& N_SI MPLE_FRAME macro
call should be the first executable statement (after imgaéibon of variables to
constants such as pointer 0) of the body of any function usiagsC.

Actually it is strongly suggested to always uselacal s_ structure de-
claredvol ati |l e struct for local garbage collected pointers. Actually do
not use the deprecat®EGQ N_SI MPLE_FRAME macro but only use the recom-
mendedBEG N _LOCAL _FRAME (when you have pointers both in arguments and
in I ocal s_), or BEG N_LOCAL_FRAME_W THOUT _ARGS (when you have
pointers only inl ocal s_) orBEG N_FRAME_W THOUT_LOCALS (when you
have only pointers in arguments).

Then we compute the kind of the source vector. We only duigicactors and
tuples. To duplicate, we compute the length of the sour¢etérom its header).

kd = ruk ki nd(vec);
if (kd == KIND.VECTOR || kd == KIND.TUPLE) {
| en = HEADERSI ZE(vec- >header) ;

9

3.1 Introductory examples 3 THE GARBAGE COLLECTOR

Once the length is computed, we allocate the resulting with a call to
gi sh_al | ocat e. This call may trigger a garbage collection, which may cleang
(by moving them) some or even all garbage collected poinieckiding the cur-
rent frame local pointers or argument pointers. With cosrgilWwithout inlining,
you might consider using th& SH ALLOCATE macro (invoke it without any
side-effects in arguments, €4 SH ALLOCATE(- - p, Sz++) ; is incorrect).

More generally, you inhibit all small inline functions by ropiling your ap-
plication with the- DNO_Q SH_| NLI NE flag. But then you have to use macros
instead of functions.

tup = qgish.allocate(sizeof (*tup) + | en*sizeof (void*));
/ | a garbage collection may occur above, changing many panter

Theqi sh_al | ocat e function returns a zeroed chunk of memory. We have
to initialize it by filling all relevant fields:

t up- >header = MAKEHEADER(KI ND_-VECTOR, | en);
for (i=0; i<len; i1++) tup->tab[i] = vec->tab[i];
+// end if kind is KINDVECTOR or KI ND.-TUPLE

Each function should end with the macro calB¥l T_FRANE, which pops the
frame registered by (the deprecaEd N_SI MPLE_FRANE) or BEG N_LOCAL _FRAME.
This macro should only be followed by a simplet ur n statement, which re-
turns a constant or a simple variable:

EXI T_FRAVE() ;
return tup;
} /1 end of ruk_dup.vector

The preferred coding style is to havelaocal s_ structure, which should be
volatile and initially cleared!

I preferred coding
voi d* foo(struct ktuplet* volatile tup,
voi d* volatile val) {
/l declare and clear a volatilelocals. structure for local pointers
volatile struct { void* ptr; void* res; } _locals_
= {0, 0};
BEG N_LOCAL_FRAME(2, t up) ;
/l... use_locals fields as the only GC pointer local variables
i f (sone_condition(tup))
locals_.res = val;

10

3.1 Introductory examples 3 THE GARBAGE COLLECTOR

/...

EXI T_-FRAVE() ;
return _|local s_.res;
}

This idiom is so common that a tiny Ruby scrgtri pt s/ gen_l ocal s
exist to generate macro definitions like

/I generated by getocals script
#define | res _locals_res

The script generate such definitions for every differentuo@nce ofl _*
names in the source. So just cdde es, run the script (with the ¢ source as
first argument and the generateld as second argument), and include its output
near the start of your file.

A function which changes a garbage collected object by upgla pointer
field in it should notify the garbage collector, for example:

/' | this function set the component of a vector returning itvjmes

value

voi d*

ruk_vector set(struct ktuplet* volatile tup, void*
volatile val, int rk) {

int sz=0;

voi d* ol dval =0;

BEG N.SI MPLE.FRAME (2, tup, 1, oldval);

i f (ruk_kind(tup) !'= KIND.VECTOR) goto end;
sz = HEADERSI ZE(t up- >header);

if (rk<O0 || rk>=sz) goto end,

ol dval = tup->tab[rk];

tup->tab[rk] = val

gi sh.wite_notify(tup); // notification of a changed ob-
ject

end:

EXI T_FRAVE() ;

return ol dval ;

}

Note that every function which may use directly or indirgdtie GC should
follow the same coding rules (detailed below). Using the G&ans either allo-
cating new objects or calling functions which may use the &dlowing these
rules is ok even for other functions, when in doubt alwaykfelthem.

11

3.2 Data structure of objects 3 THE GARBAGE COLLECTOR

The macrdd SH_WRI TE_NOTI FYis equivalenttothgi sh.write_notify
function, provided this macro is invoked without side-effe

The application has to follow some (very liberal) rules melyag data struc-
tures.

3.2 Data structure of objects

Moved objects should all start with a common prefix (i.e. adyorTheir first
word should never be zd#) so it can be a non-nil point@ (garbage collected or
not) or a header word. All objects should be at least two wtodg. The GC do
not need any additional word for moved objects.

Objects should know their size (the GC do not manage by iteelbbjects’
size) and their data type.

For example, one could start every object withuaxsi gned header whose
topmost byte is a non-zero kind number and whost 3 lower Brieede some siz-
ing information (dependent on the kind).

Your application has to define all its objects types and dapaesentations,
provided they start with a never-zero word or pointer.

As a simple toy example (nearly meaningless, only for iliatste purposes),
suppose you are coding an integer calculator with formaht#es. Then each
object can start with two half-words, a kind and a size or cddbjects can be
binary-operations, or variables (or tagged integer).

enum {
KI ND_NONE=0 / *unused*/,
KI ND_BI NOP,
KI ND_VARI ABLE

b
Binary operations in your calculator will be representéeli

enum { OP_NONE, OP_ADD, OP_SUB, OP_ MILT, OP DIV };

struct binop_st {
short kind; /*always KIND_BI NOP*/
short opcode;
voi d* left;
voi d* right;
1
12A zeroed first word indicates forwarded objects to the GC

13The pointer could be some kind of descriptor, or even a C+blgtpointer, if you have a tree
of classes sharing a common root class, with only singleritdree, and virtual methods.

12

3.3 required coding practices 3 THE GARBAGE COLLECTOR

Variables have a value (either a tagged integer or an bingeyation) and a
name; the size is the length of the name, and variables aeetslgf various size.

struct variable_st {
short kind; /*always KIND VARl ABLE*/
short nanel en; /*length of nane*/
voi d* val ue; /*value of variable*/
char nane[1]; /*actually [nanelen] bytes + final "\0" */

1
3.3 required coding practices

Our GC is not conservati® but exact. It has to know about every garbage
collected pointer, and usually modify them (when copyingeabbjects).

3.3.1 No interior pointers

Itis not allowed to have pointers to the inside of any garb@ailected object. Ev-
ery pointer should point to the start of such obje¢tserefore, your C++ application
cannot have multiple inheritance)

3.3.2 No multi-threading
Our GC does not support threading. If you dare use Posixdilrdee careful that
only one thread should use the GC.

3.3.3 Limited global data

You should have almost no global pointers (I believe havatg of global data is
a bad practice). The only permissible exceptions are:

1. you can use the small (fixed si@)array of global pointergi sh_r oot s
as you wish, reading and writing in it any pointer to a GC-epeob(or the
nil pointer, or a tagged integer).

Y4Conservative GCs [e.g. Boehm's] are much easier to usehbytrhight leak, may be slower
on some applications, and do not compact memory. But Boe@@'ss not disruptive like Qish,
and has an APl compatible with (or similar twil | oc.

15 The global roots is an array @ SH.NB_ROOTS pointers defined as 64 igi sh. h. You
could if needed change it to a rather small value (at most aHemdreds): at every garbage
collection, the whole roots array is scanned and updatedasgimg lots (e.g. thousands) of such
roots will not be reasonable.

13

3.3 required coding practices 3 THE GARBAGE COLLECTOR

2. Each module is described by an entryginsh_nodul et ab. Each such
entry contain a rather constant pointer. You can set or ah#mgconstant
of module to pointep by callinggi sh_changeconst ant (4, p),and
you can get this constant lgi sh_const ant () or even accessing di-
rectly thekm const ant field in the entry ofqi sh_nodul et ab. In
practice, you could make this constant point to a structli@@-ed point-
ers.

3.3.4 Pointers are volatile

All pointers are volatile (because the GC silently movesrthen particular ar-
guments should be volatile. You should compile with thfevol ati | e and
-fvol ati | e- gl obal flagstothegcc compiler. Mostimportantly, you should
explicitly declare volatile your formal arguments. So tbédwing is incorrect

#error formal argunment not declared volatile
voi d* foo(struct variable_st* var) { /*body*/ }

You should definitely code instead like this - notice thatvloé at i | e qual-
ifier goesafterthe* indicating a pointer):

/* explicit volatile argunent */
voi d* foo(struct variable st* volatile var) { /*body*/ }

Omitting thevol at i | e qualifier does produce hard to find bugs.

3.3.5 Indicate arguments and locals to the GC

Each function bod@ should start with a prologue and end with an epilogue. The
prologue mark the current call frame (remembering the frggiment, the first lo-
cal pointer, and the number of arguments and of local pahtand the epilogue
reset the previous call frame. The prologue is

BEGQ N_SI MPLE_FRANE(nbparam, firstparam, nblocal, firstlocal) ;

the epilogue iEXI T_FRAME() ; . The cpu time cost of the prologue or epi-
logue small, nearly constant, and independent of the nusntielocals or ar-
guments. Actually, thiBEA N_SI MPLE_FRAME macro is deprecated. Use
theBEG N_LOCAL_FRANME macro (when you have parameters and acal _
struct), orBEG N_FRAME_W THOUT _LOCALS macro (when you have param-
eters but no local pointer), @G N_LOCAL_FRAME_W THOUT _ARGS macro
(when you have al ocal _ struct without any pointer parameters).

18At least each function using directly or not the GC, i.e. eitallocating memory with
gi sh_al | ocat e or calling -directly or indirectly- any function which it§eloes allocation

14

3.3 required coding practices 3 THE GARBAGE COLLECTOR

All local pointers should be explicitly initialized to O (arsimple value).

Itis not permissible to return from a function without gotthgu EXI T_FRAME() ;
the suggested coding convention is the have one single eiit,ge a single
EXI T_FRAME(); atthe end followed by aet ur n statement. If a function
returns a garbage-collected value, it should be a locak@oin

For convenience, there is als8BG N_LOCAL _FRAME(nbparam, firstparam)
macro, which assumes that a local variable nathed al s _is defined as a struc-
ture containing only garbage-collected pointersRAbyscriptgen_| ocal s is
provided to generate (in a separate file to be included) foh @ariable named
likel *,e.g.l .fooamacro#define | _foo _|ocals_.foo;inpractice,
local GC-ed pointers egar should be declared as a pointer field.irocal s_
and referred ak _bar .

For convenience, there iBEA N_FRAME W THOUT _LOCALS(nbparam, firstparam)
macro to be used when you don't have any local garbage-tetigminter (but
only parameters). SymetricallyBEA N_LOCAL FRAME W THOUT _ARGS()
macro is provided, when you only have local garbage colieptanters inside
your usuall ocal s_structure.

If a frame (therefore a function body) have no local poini{@rsno pointer
arguments) it can pasg sh_ni | (or any unused adress) as the appropriate ar-
gument to theBEG N_SI MPLE_FRANME or BEG N_LOCAL _FRANME macro. For
example, a function without arguments and witlocal s_ encapsulated pointer
variable should start withBEG N_.LOCAL_FRAME(0, qi sh_ni l). Internally
gi sh_ni | is a pseudo-data whose address is the nil pointer.

Every local GC pointer should be explicitly initialized tesenple value (usu-
ally the null pointer). It is best to clear any pointers héaused in a loop when
exiting out of the loop.

You cannot usé ongj np without special measures. If you want exceptions,
use theBEG N_.EXCEPT_BLOCK CATCH.EXCEPT_BLOCK END_EXCEPT_BLOCK
THROWEXCEPTI ON macros from filegi sh. h

3.3.6 No composition of function calls

Since each pointer should be known to the GC (either as a anguan a local
explicited thruBEG N_SI MPLE_FRAME or BEG N_LOCAL_FRAME, or as a
global root or constant, or as a field in a garbage collectgetoft is not permis-
sible to call several functions, e.qg.

#error no function conposition
| res = f(g(y),!l_z->ptrfield);

but you should code thru a temporary value

15

3.3 required coding practices 3 THE GARBAGE COLLECTOR

/* use a tenporary variable */

I _tmp = g(y);

| res =f(l_tnp, | _z->ptrfield);
}

3.3.7 Complete allocation

Every allocation of a garbage collected object is done thocalhto one of the
following functions (which may trigger a garbage colleaiio

e gi sh_al | ocat e(bytesize) to allocate an ordinary (movable) object with
a natural (word) alignement. This is the most often usedation function;
usually thebytesize is somesi zeof (t ype) .

e gi sh_al | ocat e_al i gned(bytesize, alignment) to allocate a mov-
able object with an expliciilignment expressed in bytes (which must be a
small power of 2 in words).

e gi sh_fixed._al | oc(bytesize, finalizer) to allocate a fixed finalized
object (aligned to at least tisg zeof (doubl e)), with an optional final-
ising routine (called by the GC with the adress of the fixeaot)j

Once an object is allocated it can be (and should be) fillede dllocated
object should be filled to become valid (for marking and saagroutines) before
the next allocation. Memory provided by the above allocatmutines is cleared
to all-zero bytes.

It should be noted that in the usual cagsesh_al | ocat e and_al | ocat e_al i gned
are very quick and inlined routines (basically a pointerémeent and a compare
to the birth region limit) which occasionally triggers a bage collection. Adven-
turous expert users could even allocate several objecteatvith a single call to
gi sh_al | ocat e, giving it the cumulated total size of all allocated objects

Since object allocation is very quick (much faster than &toatal | oc) itis
expected that the application makes frequent allocatichtot lived objects.

The macrdQ SH_ALLOCATE does the same ag sh_al | ocat e provided
its invocation has no side-effects.

3.3.8 Notification of updates (write barrier)

Since the garbage collector has to track pointers from oldets generation, it
should be aware of any updates of allocated objects. Thi®me dy calling

gi sh.write_notify(objptr) after changing the GC-ed pointers in the object
objptr and before any further allocation or call.

16

3.3 required coding practices 3 THE GARBAGE COLLECTOR

It is not required to notify the GC after any non-pointer ujgda(e.g. adding
bytes into a garbage collected string). It is better to camaesuseless calls to
gi sh.write_notify than to forgot one.

A garbage collection can be triggered at egclsh_wri t e_noti f y points.

Explicit update notification favors a functional progranmgnstyle (where up-
dates are rare).

Assignement to local GC pointers, to arguments, and rooabias do not
require any notification.

3.3.9 Optional explicit garbage collection

The garbage collector can be explicitly called by the ajgpion with

gi sh_gar bagecol | ect (size, full flag) where thesize is an estimation (which
can be left as 0) of the needed size -in bytes- of future obpat thefull flag IS
non-zero to force a full garbage collection (otherwise, aanicollection will be
done, unless the old generation has grown significantly).

To be sure that at leasize bytes are allocatable without GC, you can call
gi sh_reserve(size) which calls the garbage collector unlesse bytes are
available in the birth zone. This is particularily usefulapplications having
garbage-collected type descriptors, which have to bagsand fill the type de-
scriptors’ descriptor without any garbage collection.

It could be interesting to trigger an explicit garbage adlilen once in a while
in an idle loop, or before an important processing requitatg of allocation or
recursion. This is always an optimisation, and the GC wiltkmeithout a single
explicit call togi sh_gar bagecol | ect in the application code.

3.3.10 Exception handling

Exception handling has to cooperate with the GC, becauskeedframe linking
mechanism. You cannot simply calbngj np or throw C++ exceptiow@. In-
stead you have first to declare (in your application) one @y \ew) voi d*
global (or static) pointer variable e.ggxv. You also need a local integer vari-
able cod holding a non-zero error or exception code (usable as you, vizarm
never O if exception thrown, it is the result set j np) and a local pointer
l ocal s. exobj holding any exception (garbage-collected) object.

Then you surround any potentially exception-raising coaléef the usual
BEG N.LOCAL_FRAME... or similar macro) with:

BEG N_EXCEPT_BLOCK(exv) ;
// your code here may directly or indirectly throw “exceptss

1f you use C++ exceptions, ensure (by coding tricky appatpreonstructors and destructors)
that theEXI T_FRAME is called on exceptional frame unwinding. You are on your own

17

3.3 required coding practices 3 THE GARBAGE COLLECTOR

Then you code as usual, you can call some other routines wloietiocation
and may indirectly throw an “exception” (using tM&lROW EXCEPTI ONmacro
detailed below). Thexv argument to thd8BEG N_EXCEPT_BLOCK(exvV) ;
macro (vaguely similar to thier y keyword of Java or Ocaml) holds the adress of
the exception-catching frame, and tBEG N_EXCEPT_BLOCK(exv) ; opens
a brace (so starts a C code block). Then you catch exceptibms w

CATCH_EXCEPT_BLOCK(cod, | ocal s_. exobj);
Il your code handle here exception of ermwd ...
/l...with_| ocal s_. exobj set to the exception object

So thisCATCH_EXCEPT_BLOCK s vaguely similar to thev t h keyword of
Java or Ocaml exception handlers. At last you have to endxteption hanling
code with

/I this ends the exception handling code
END_EXCEPT_BLOCK(exV) ;

Thevoi d* variable argument t&ND_EXCEPT_BLOCK(exVv) ; should al-
ways be the same as the argument of the matching preBE@sN_EXCEPT_BLOCK(exV) ; .
Inside the normal block enclosed wBitG N_EXCEPT_BLOCKandCATCH_EXCEPT_BLOCK
you can call functions (or even directly) which throws (ditg or indirectly) an
“exception” with THROW EXCEPTI ON(exv, Cod, Exob). TheCod should
be a non-zero integer (an error code, passed as the secamdenttol ongj np)
and theE'zob is the (garbage-collected) error object. If this “exceptithrowing
happens, control jumps to tiEBATCH EXCEPT _BLOCK.
Of course, th8EG N_EXCEPT_BLOCK, CATCH_EXCEPT_BLOCKandEND_EXCEPT_BLOCK
have to be in the same C code block (so the same function).

3.3.11 Utility routines

The Qish runtime provide some utility functions, in parta

e (i sh_strhash(string, length) compute an hashcode of a giveming
with an explicitiength; if this length is negative, thetring is supposed
null-terminated, as ifength == strien(string)

e (i sh_si gexecvp(file, argv) spawn a process to execytéde with the
given progranurgv null-terminated arguments and wait for its completion.

e i sh_prine_after(:) returns a prime number bigger thaprovided
that0 < i < 10000000 = 107 which can be useful for hashtables, etc.

18

3.4 Mandatory routines to the GC 3 THE GARBAGE COLLECTOR

e i sh_par anet er (name) retrieves the string-value of a runtime param-
eter of a givemame.

e (i sh_put par anet er (name, val) putinto the runtime paramter named
name the string valueal

e gi sh_parse_configfil e(filename) parse asimple configuration file
and set parameters appropriately

e gi shgc_.ini t(); should be called once to initialize the garbage collec-
tor, before any allocation!

e i sh_l oad_nodul e(modulename, rank) loads (withdl open) a shared
object module at a given rank. It returns O iff ok. A previousdule at the
same rank is closed latter with sh_post poned_dl cl ose

e (i sh_get synbol (name, modrank) gets the address of the symbol of
givenname in a module of givemnodrank or in any modules ifnodrank <
0

e (i sh_post poned._dl cl ose() close any previous module with cl ose
and should be called when the call stack is very low (i.e. irygvent loop)

e (i sh_pani c is a printf-like macro which aborts after displaying a panic
message.

3.4 Mandatory routines to the GC

Your application should provide four mandatory routine®GC and store their
address in global function pointer variables before any @C All such functions
should be provided (give a dummy function if not needed)c&ithese functions
are called by the GC, they should not follow the above codinglgines (no
BEGQ N_SI MPLE_FRANME etc...) and should of course never allocate objects or
call the GC.

3.4.1 Copying functiongi sh_gc_copy_p

The function pointeqi sh_gc_copy_p should be set by your application to a
routine which copy an object (into an address provided by36#. Its prototype
isvoi d* gcep, (VvOi d**padr, void* dst, const void* src).
It should set padr to the new adress of the copy (usuallyt or some aligned
word after) and should return the first word after the copiegct.

For simple cases (word aligned structures) the copy routmebe as simple
as e.g. a switch of cases like

19

3.4 Mandatory routines to the GC 3 THE GARBAGE COLLECTOR

/| *after determ ning the dynam c object type*/
((object _type)dst) = *((object_type*)src);
return ((object _type*)dst)+1;

after having determined the dynamic object type (e.g. tisrheader).
The first word of the copied object should not be zero.

3.4.2 Minor scan of a movable objectji sh_m nor _scan_p

The function pointegi sh_m nor _scan_p should be set by your application to
a routine which scans for the minor garbage collection afelobby updating each
of its pointer fields with theQd SHGC_M NOR_.UPDATE macro (called with the
pointer field). This routine should return the next word aftee scanned object.
Its prototype isvoi d* minor.., (voi d*ptr); and it should return the first
word after the scanned object at address .

For simple cases (word aligned structures) the minor scatinecan be as
simple as e.g. a switch of cases like

/| *after determ ning the dynam c object type*/
Q SHGC M NOR_UPDATE(((obj ect _type*)src)->ptrfieldl);
Q SHGC M NOR_UPDATE(((obj ect _type*)src)->ptrfiel d2);
/* etc for every field*/

return ((object _type*)src)+1;

after having determined the dynamic object type (e.g. ttsrbéader).

When you are sure that the pointer is a true pointer (ie ismreetagged integer)
you can us€) SHGC M NOR PTR.UPDATE instead of) SHGC_M NOR_UPDATE.

Qish accepts not only null pointers, but also any addresderthe first page
of address space (so on x86 any address below 0x1000). Fana@esyou could
mark emptied slots in hashtable specially by such an ad@egg¢s/oi d*) 16).

3.4.3 Full scan of a movable objectji sh_ful | _-scan_p

The function pointegi sh_f ul | _scan_p should be set by your application to a
routine which scans for the full garbage collection and cldpy updating each of
its pointer fields with th€) SHGC_FULL _UPDATE macro (called with the pointer
field). This routine should return the next word after thenswal object. Its proto-
typeisvoi d* full,., (voi d*ptr); and it should return the first word after
the scanned object at addrgds .

For simple cases (word aligned structures) the full scatimewan be as sim-
ple as e.g. a switch of cases like

20

3.4 Mandatory routines to the GC 3 THE GARBAGE COLLECTOR

/| *after determ ning the dynam c object type*/
Q SHGC_FULL_UPDATE(((obj ect _type*)src)->ptrfieldl);
Q SHGC_FULL_UPDATE(((obj ect _type*)src)->ptrfiel d2);
/* etc for every field*/

return ((object _type*)src)+1;

after having determined the dynamic object type (e.g. tisrheader).

When you are sure that the pointer is a true pointer (ie ismreetagged integer)
you can usé&) SHGC FULL_PTR UPDATE instead ofQ SHGC_FULL _UPDATE.

Usually the full scanner has the same code as the minor sc&xeept for the
update macro§ SHGC_FULL _UPDATE instead ofQ SHGC_M NOR_UPDATE.

If the first word of your object is not a header but a garbagkectdd pointer
-for instance the class pointer in a ObjVlisp-like objectdaage (i.e. single inher-
itance language with classes reified as objects)-, be d¢anefour scanning GC
routines to check that it is a pointer (you could use@h&H | S_MOVI NG_PTR(ptr)
macro), then update the pointer first (Wh SHGC_FULL _UPDATE or Q SHGC_M NOR_UPDATE),
then use it appropriately (your reified class could contalascription of its fields,
or scanning routine pointers, ...).

3.4.4 Full scan of a fixed objectji sh_fi xed_scan_p

The function pointegi sh_fi xed_scan_p should be set by your application
to a routine which scans for the full garbage collection abggect by updating
each of its pointer fields with th@ SHGC_FULL_UPDATE macro (called with
the pointer field). This routine returns void and knows alibatfixed object size.
Its prototype isvoi d fized,.., (Vvoi d*ptr, int size); whereptr is
the address of the object amdze is its size in bytes.

For simple cases (word aligned structures) the fixed scatinegan be as
simple as e.g. a switch of cases like

/| *after determ ning the dynam c object type*/
Q SHGC FULL_UPDATE(((obj ect _type*)src)->ptrfieldl);
Q SHGC FULL_UPDATE(((obj ect _type*)src)->ptrfield2);
/* etc for every field*/

return;

after having determined the dynamic object type (e.g. ttsrbéader).

Even an application with only moving objects (and no finaliZexed objects)
should provide a dummy fixed scanner.

For the simple examples in sectionl3.2, the routines could be

21

3.4 Mandatory routines to the GC 3 THE GARBAGE COLLECTOR

voi d* gc_copy(voi d**padr, void* dst, const void* src) {
switch (*(short*)src) {
case KI ND_BI NOP
((struct binop_st)dst) = *((struct binop_st*)src);
return ((struct binop_st*)dst)+1;
case Kl ND_VARI ABLE:
{ struct variable_st* srcvar = src;
int srcnam en = srcvar->nanel en
mencpy(dst, src, sizeof(struct variable_st)+srcnanien);
if (srcnamen & (sizeof(void*)-1)) {
/*round up nanme |l ength to word*/
srcnam en | = (sizeof (void*)-1); srcnanel en++;
}
return ((struct variable_st*)dst)->nane + srcnamnl en
}
}
}

voi d* m nor _scan(voi d*ptr) {
swtch (*(short*)ptr) {
case KI ND_BI NOP:
Q SHGC_M NOR_UPDATE(((struct binop_st*)ptr)->left);
Q SHGC_M NOR_UPDATE(((struct binop_st*)ptr)->right);
return ((struct binop_st*)ptr)+1;
case Kl ND_VARI ABLE:
{ struct variable_ st* var = ptr;
int naml en = var->nanel en;
Q SHGC_M NOR_UPDATE(var - >val ue) ;
if (namen & (sizeof(void*)-1)) {
/*round up nanme |l ength to word*/
nam en | = (sizeof (void*)-1); nanel ent++;
}

return var->nane + srcnani en;

Thef ul | _scan routine would be similar (usin@ SHGC_FULL _UPDATE).
Since there are no fixed object you have to provide a dummy fgadning
routine which just callebor t

22

3.5 Using Qish in C++ code 3 THE GARBAGE COLLECTOR

3.5 Using Qish in C++ code

| just give very few hints on using Qish in C++ code:

1. no implicit or explicit use ot hi s. Since it is not possible to declare the
argument hi s to be a volatile pointer, you should not use it (either explic
itly as int hi s- >met hod(f oo) orthi s->fieldorimplicitly as in
met hod(f oo) or fi el d). Instead, copy hi s to a local pointer, using
it explicitly. This stylistical constraint is annoying.

2. no multiple inheritance. Since Qish does not supportimtgointer, you
cannot use multiple inheritance.

3. Have atree and not a forest of classes by defining a comnpargass to
all your GC-ed objects. The virtual table pointer is usu#tky first word of
such objects.

| would suggest to avoid using C++ with Qish on new code. bB$teonsider
using other programming languages like Ocaml, CommonLlJiaya.

3.6 Advanced application explicit forwarding.

Advanced applications using Qish (and understanding gueteits internal pro-
cessing) may explicitly forward pointers in the applicatande. Use this (exper-
imental) feature with caution.
Explicit forwarding could be useful when you want every geirto a (garbage-
collected and allocated) addresdo be replaced by a fixed. A typical appli-
cation could be to grow existing values, dynamically chatigeclass (hence the
size) of an object, etc...
An application can for such an explicit forwarding with thaeno callQ SH EXPLI Cl T_.FORWARC
Then the garbage collector will replace %pointer toalpha than its scans with
beta.
If an application use this explicit forwarding, it has tolt (explicitly in
application code) any potential such pointer with @eSH FOLL ONFORWARD
macro which should be applied to every pointer (either argniror local after as-
signment). If the pointer is never a tagged integer, you nafly@& SH.FOLLONFORWARD_PTR
directly. If you statically know that only some pointers miagve been explic-
itly forwarded byQ SH EXPLI CI T_-FORWARD you mayy (at your own risk) call
Q SH FOLLOWFORWARD only for such pointers.
Refer to tha ncl ude/ gi sh. h file for definitions of these macros.

1830 all occurrences are replaced only after a major full ggelwmllection; after a minor col-
lection only some pointers are replaced!

23

4 A TINY BENCHMARK

Explicit application forwarding is an experimental untegtfeature Use it at
your own risk! If you happens to use it, be kind enough to exptae why.

4 A tiny benchmark

A tiny benchmark (adapted from the GCbench.c by H.BoehnilidsEP.Kovac,
W.Clinger, et al) is ported to qgish.

4.1 benchmark results

It is the file GCBench. ¢ (where we changed the allocate sized to 4 times the
original) in ourl i b/ subdirectory (where you can run all 3 benches wittk e

OPTI MFLAGS=" - 2 - DNDEBUG cl ean |i b bench. The samefilé&CBench. c
compiles with Qish GC, with Boehm’s GC, and with manual mabmd free ac-
cording to the setting of preprocessor fl&sSH for Qish,GC for Boehm, and no

flags for malloc and free. (Times have been measured withgel8.3 of Qish).

e Qish GC (standard birth size of 8Mbytes): CPU 9.160 user 1Qldystem
=13.670 total time (sec); done 131 minor and 16 full garbadlections

e Boehm’s GC: CPU 18.570 user + 0.310 system = 18.880 total (g®@€);
Completed 42 collections

e explicit malloc and free: CPU 24.810 user + 2.810 system $ZYtotal
time (sec)

e Qish GC with the birth size reduced to 4 Mbytes made widke OPTI MFLAGS=" - O2
- DNDEBUG - DM N.BI RTH_SI ZE=4194304’ clean i b benchgi sh:
CPU 13.810 user + 6.350 system = 20.160 total time (sec); doske 257
minor and 39 full garbage collections

e Qish GC with the birth size increased to 16Mbytes: CPU 6.%0 tt 4.350
system = 11.250 total time (sec) Qish done 67 minor and 6 flbage
collections

e Qish GC with the birth size increased to 32Mbytes (probabtsignificant,
since it is similar to the live object size): CPU 5.920 user. #08 system =
9.620 total time (sec) Qish done 34 minor and 2 full garbadiectons

e Boehm’s GC with holesake OPTI MFLAGS=" - Q2 - DNDEBUG - DHCOLES'
clean lib bench, so for every used node allocated, an extra useless
(dead) node is also allocated: CPU 43.220 user + 0.380 systé;600
total time (sec) Completed 72 collections

24

4.2 Tuning Qish 4 ATINY BENCHMARK

e Qish GC with holes (and standard birth size of 8Mbytes): CRl490 user
+ 7.380 system = 19.870 total time (sec) Qish done 197 mindr2&nfull
garbage collections

e Qish GC with holes and increased birth size of 16Mbytes: CP8®user
+ 6.460 system = 16.020 total time (sec) Qish done 99 minorléntlll
garbage collections

e Qish GC with holes and small birth size of 4Mbytes: CPU 17.686r +
8.500 system = 26.030 total time (sec) Qish done 389 minorSantuill
garbage collections

Obviously, this small benchmark does not prove much. Buh@sot too
bad, even w.r.t. the famous Boehm's (et al.) conservatine @uite mature)
garbage collector.

Explicit bug-prone manual memory management with the iofasi r ee
routine is not only harder to code, but seems even slowerdlidhe other au-
tomatic memory management techniques.

Qish is highly sensitive to the birth size. This is expectsithide a GC is
trigerred only when the birth region is full). Qish requires of system calls,
because it doesmap-ing at every GC. Perhaps we could improve it by caching
memory zones... (but the GC requires zero-ed memory). Qishd can be done
by carefully changing some compile-time constants (ngt&bIN_Bl RTH_SI ZE
MAX_BI RTH.SI ZE FULL_GC_PERI OD) at the start of fild i b/ gi gc. c.

Qish works well with holes (because it compact them) and ssgihed with
allocation of small short lived temporary objects in minch{gh may favor some
“functional” style of coding).

It would be very interesting to port Qish to an existing mapi-ed applica-
tion (like guile, some application using Boehm’s GC, or eeamacs) but | have
not enough time for this. | am willing to help any person whieaints to do so.

Qish is designed to be used for C code generators.

4.2 Tuning Qish

To optimize Qish for your needs you could :

e use the usual trick of allocating several objects simultaho(in one single
gi sh_al | ocat e for all of them).

e explicitly invokeqi sh_gar bagecol | ect when needed (e.g. at start of
atopmost loop...).

25

5 TODO LIST (MULTI-THREADING?)

e setthe numbe@ SH NB_ROOTS of variable roots (ie the size of tlygg sh_r oot s
global array) ini ncl ude/ gi sh. h to your needs. Leave it at most to a
few hundred or dozen.

e changethél N Bl RTH.SI ZE andMVAX Bl RTH_SI ZE andFULL _GC THRESHOLD
inli b/ qi gc. c. The minimal birth size is a sensitive number (8 megabytes
by default). | believe it should be at least half a megabytel @ most a
fraction, e.g. the tenth, of your available RAM). The maxirbath size
limits the maximal size of allocated objects.

e change theQ SH.MAXNBCONST number (65536) to a power of two (at
least 1024). It is the maximal number of global constant taog (for
Q SH.GLOBCONST)

e if your plateform has enough registers (this is false for w8t 6 usable
registers only) you could (with GCC) reserve global regsstergi shgc_bi rt h_cur
andqgi shgc_bi rt h_st or ept r global variables (im ncl ude/ qgi sh. h).

5 ToDo list (multi-threading?)

Some people expressed the wish of making Qish multi-thitgdsing Posix
threads ie<pt hr ead. h>), in the sense of having a few thresoncurrently
allocating garbage collected objects. This could be doatitea “stop the world”
strategy: when a thread requires a (major) collection itbasop all other threads,
but minor collections eremains local to threads (and sendinjects between
threads requiring some special precautions). This appreacks only for a few
(at most a dozen) threads.

The problem with this approach is that the current allocgpiointergi shgc _bi rt h_cur
has to become a thread-local variable. And there is no stdmdachanism pro-
viding them very quickly: | believe that the standqrdhr ead_get specific
function (which would have to be called at each allocatiotingi sh_al | ocat e
- even those which do not trigger any collection) would digantly slow up this
runtime.

| am not very fluent with multi-threading applications, anddn’t have any
biprocessor machine at home yet (experimentally a bipsmresachine is almost
required to test multithreading applications).

People having access to 64 bits machines could try to cor@uslle on these.
Contributions are welcome!

Comments on this are welcome.

191f you need multi-threaded capable garbage collectiongsst using Hans Boehm’s collec-
tor.

26

	Short overview
	Requirements
	The garbage collector
	Introductory examples
	Data structure of objects
	required coding practices
	No interior pointers
	No multi-threading
	Limited global data
	Pointers are volatile
	Indicate arguments and locals to the GC
	No composition of function calls
	Complete allocation
	Notification of updates (write barrier)
	Optional explicit garbage collection
	Exception handling
	Utility routines

	Mandatory routines to the GC
	Copying function qish_gc_copy_p
	Minor scan of a movable object qish_minor_scan_p
	Full scan of a movable object qish_full_scan_p
	Full scan of a fixed object qish_fixed_scan_p

	Using Qish in C++ code
	Advanced application explicit forwarding.

	A tiny benchmark
	benchmark results
	Tuning Qish

	ToDo list (multi-threading?)

