
GCC MELT
a high-level domain specific language

to extend the GCC compiler
gcc-melt.org

Basile STARYNKEVITCH
basile@starynkevitch.net or basile.starynkevitch@cea.fr

(Laboratoire de Sûreté du Logiciel = Software Reliability Lab)

CEA, LIST (DILS), NanoInnov b862 PC174, CEA/Saclay, 91191 Gif/Yvette Cedex, France

TAPAS2012 tool presentation within SAS2012, Deauville, september 14th 2012

n 1

http://gcc-melt.org/
mailto:basile@starynkevitch.net
mailto:basile.starynkevitch@cea.fr

#include <stddisclaimer.h>

l all opinions here are only mine
l I don’t speak for my employer CEA, LIST
(or for any funding agencies, or any other institution)

l I don’t speak for the GCC community
(I have strong opinions about GCC not shared by it)

n 2

CONTENTS�

�

�

�

Introduction
GCC internals
MELT
Conclusions

n 3

Introduction
Static analyzers and compilers

l compilers do use static analysis techniques.
l static analysers do share a lot of luggage with compilers:

1. parsing and abstract syntax tree representations
2. internal representations of a compiler (e.g. “control flow graph”,

“liveness of variables”, “cross-referencing”)
3. utilities and framework (e.g. giving warnings to the user)
4. etc...

Take profit of a lot of work available in free software compilers
l sophisticated static analysis could profit to weird uses of compilers:

1. extreme optimizations (e.g. -O∞)
2. coding rules validations

Apply your geniune static analysis techniques to compilation issues

n 4

Introduction
LLVM [orGCC?]

Usable free compilers for common low-level languages LLVM or GCC.

l llvm.org with Clang
n BSD licensed, weaker contribution from industry; Apple dominated
n clean design and code in C++, well documented
n few source langages (C, C++, Objective C)
n few targets (x86, ARM, ...)
n LLVM stricto sensu is a JIT-ing library, Clang is the compiler frontend

n 5

http://llvm.org/

Introduction
[LLVMor]GCC!

I know GCC (but Uday Khedker knows it much better www.cse.iitb.ac.in/grc)

l gcc.gnu.org
n messy, old, legacy compiler
n GPLv3 licensed, so strong industry contributions; FSF owned, so no

single industrial dominator, but “harsh” community
n legacy [spagetti?] code, under-documented
n many source languages (C, C++, Objective C, Go, Ada, Fortran, D)
n many targets (more than 30, including x86, PowerPC, ARM, and many

“weird” processors) and systems (Linux, Windows, FreeBSD, Android,)
n source code in C, now going into C++1

n GCC is a compiler collection with compiler generators

Nobody knows well both GCC and LLVM

1Much more dirty than LLVM C++ class hierarchy

n 6

http://www.cse.iitb.ac.in/grc/
http://gcc.gnu.org/

Introduction
MELT

MELT gcc-melt.org is a [meta-]plugin for GCC providing a
high-level domain specific language to extend GCC.

l plugging Ocaml into GCC is not humanly feasible (I tried)
GCC has more than 2000 types and ≈ 10MLOC 2

l MELT is a free (GPLv3 licensed, FSF copyrighted) plugin for GCC 4.6 or
4.7

l MELT is a DSL fitting into GCC internals
l MELT provide some features of Ocaml (or Scheme)

1. garbage collection of values
2. pattern matching
3. high-order programming (closures)
4. (but not static typing or type inference) unlike Ocaml, MELT is a

mostly dynamicly typed language (à la Scheme)

2See David Malcom’s gcc-python-plugin

n 7

http://gcc-melt.org/
https://fedorahosted.org/gcc-python-plugin/

Introduction
a disappointing talk!

[I don’t know really abstract interpretation]

l no sophisticated analysis done (yet!) in MELT
l but some simple ones
l and a usable infrastructure
l coding in MELT is probably more concise than coding plugins in C
for GCC

n 8

GCC internals
GCC&MELTpicture

n 9

GCC internals
GCC internal representations

GCC has many rich internal representations
(thousands of C data types, i.e. struct)

l Tree-s3 for the AST of declarations, source [or SSA] variables,
operands

l Gimple-s4 for the simple instructions (e.g. 3 operands instructions à
la x ← y + z)

l basicblock-s made of gimple-s (thru gimpleseq-s)
l edge-s for the control flow graph, between basicblock-s
l etc

The GTY(()) annotation is for garbage collection in Gcc source code

3200 different variants of tree-s, see file gcc/tree.def of Gcc
438 different variants of gimple-s, see file gcc/gimple.def, half for OpenMP

n 10

Looking into some of the GCC internals:
l dumping facilities, e.g. gcc -fdump-tree-all -O -c foo.c
gives hundreds of files like5 foo.c.073t.phiopt1 ...

l with MELT’s probe facility:
gcc -fplugin=melt -fplugin-arg-melt-mode=probe -O -c
foo.c

n -fplugin=melt loads the MELT plugin6

n -fplugin-arg-melt-mode=probe gives the mode for the MELT
plugin7

n MELT has many other options -fplugin-arg-melt-debug shows a
lot of debugging output (to debug MELT or your MELT extensions).

5the number 073t is absolutely meaningless
6You could load several plugins, but you usually load one at most
7without any mode, MELT does nothing. Use the help mode to get help about

existing modes.

n 11

GCC internals
MELTprobe demo

with source of sash-3.7 file cmd_grep.c l.70
gcc -fplugin=melt -fplugin-arg-melt-mode=probe \

-O -c cmd_grep.c
(a buggy GTK probe GUI interface to MELT with textual protocols to/from GCC+MELT)

n 12

GCC internals
Gcc infrastructure and passes

GCC infrastructure
l utilities, e.g. diagnostic messages or options handling
l pass manager (about ≈ 250 passes in GCC)
l [poor man’s] GCC garbage collector Ggc
only called between passes, don’t handle local8 data!

l extending GCC by adding your pass
n various kind of passes, notably Gimple, IPA (interprocedural

analysis), RTL
n where should you add your pass???

8Ggc is not managing pointers in the call stack; not managing data internal to a
pass; usable for data shared between passes

n 13

MELT
MELT forOcaml-ers

Lisp-like syntax (operator operands ...)
l (let ((σ1 ε1) (σ2 ε2)) β1 β2 β3) like Ocaml’s
let σ1 = ε1 in let σ2 = ε2 in β1 ; β2 ; β3
or Scheme’s let*; use letrec like Ocaml’s let rec

l (progn ε1 ε2 ε3 ε4) like Ocaml’s
begin ε1; ε2; ε3; ε4 end

l (lambda (x) β) like Ocaml’s fun x -> β

l (defun foo (x y) β1 β2) to define a named function like
Ocaml’s let foo x y = β1 ; β2 ;;

l (if τ ε ε′) like Ocaml’s if τ then ε else ε′

Syntactic sugar: ’ε parsed as (quote ε) for “quotations”;
?ε as (question ε) for patterns; !ε as (exclaim ε) for references.
Names (a.k.a symbols) may contain non-letter characters, so a-b or +i is
a single name. Case is not significant.

n 14

MELT
matching syntax introduction

In MELT (with the patterns πi usually starting with ?)

(match µ
(π1 β1,1 β1,2)
(π2 β2,1 β2,2 β2,3)
(π3 β3))

like in Ocaml

begin match µ with
π1 -> begin β1,1 ; β1,2 end

| π2 -> begin β2,1 ; β2,2 ; β2,3 end
| π3 -> β3

end

n 15

MELT
a realMELTexample code

Find every call to fflush(NULL) in functions whose name starts with
bar with a pass coded in Melt, mostly:
(match cfundecl

(?(tree_function_decl_named
?(cstring_prefixed "bar") ?_)

(each_bb_current_fun () (:basic_block bb)
(eachgimple_in_basicblock (bb)

(:gimple g)
(match g
(?(gimple_call_1 ?_

?(tree_function_decl_named
?(cstring_same "fflush") ?_)

?(tree_integer_cst 0))
(inform_at_gimple g

"found fflush(NULL)"))
(?_ ())))))

(?_ ()))

n 16

MELT
MELTandC

MELT is translated to C code. That generated C code could be compiled
(by a make process started by MELT i.e. gcc -fplugin=melt) into a
module (shared object), then dlopen-ed by the same MELT run.

MELT is not a Gcc front-end.

The MELT to C translator is bootstrapped, i.e. implemented in MELT
(≈ 57KLOC). The C form of the translator melt/generated/*.c is
distributed with MELT source code (like boot/ocamlc for Ocaml).

Your C code can be mixed inside MELT

MELT provides a lot of linguistic devices to define MELT constructions in
terms of their generated C code

n 17

MELT
Things=MELTvalues∪GCC stuff

1. MELT first-class values (preferable)
n Nil, closures, lists, boxed strings, boxed tree-s, boxed gimple-s,

MELT objects, etc
n homogeneous hash-tables or maps: Associate a key to a non-nil

value.
required, because GCC don’t permit to extend its data structures (no
slot in tree-s for client data).

n fast allocation, because of MELT generational copying collector
backed up by Ggc

2. GCC stuff (second-class, but useful) - the raw C data
n gimple-s, tree-s, edge-s, long etc etc
n only collected by Ggc

MELT is dynamically typed for values, and statically typed for stuff
c-type annotations in MELT code like :tree

n 18

MELT
Definingmatchers bymacro-strings

(defcmatcher gimple_assign_minus
(:gimple ga)
(:tree lhs rhs1 rhs2)
gasminus
;; test
#{/*gimple_assign_minus $GASMINUS ?*/ ($ga && is_gimple_assign($ga)

&& gimple_expr_code($ga) == MINUS_EXPR)}#
;; fill
#{/*gimple_assign_minus $GASMINUS !*/
$lhs = gimple_assign_lhs($ga);
$rhs1 = gimple_assign_rhs1($ga);
$rhs2 = gimple_assign_rhs2($ga); }#

;; operator expansion
#{/*gimple_assign_minus:*/ gimple_build_assign_with_ops(MINUS_EXPR,

$LHS, $RHS1, $RHS2)}#
)

n 19

MELT
Small examples ofMELTcode

e.g. melt-examples/ex06

n 20

Conclusions
Conclusion

l GCC is legacy code: 10MLOC and still growing
l MELT enables to write “quickly” some passes working on (or
modifying) GCC internals (notably Gimple)

l ad-hoc pattern matching (with views à la Wadler) is essential

Coming soon in MELT (usually release every 2 months): evaluator of
MELT expressions, more Gimple
Future work: LTO!

I’m interested in joining e.g. European or French collaborative research
projects to use MELT to enable your sophisticated analyzers in GCC
basile.starynkevitch@cea.fr
More on gcc-melt.org

n 21

mailto:basile.starynkevitch@cea.fr
http://gcc-melt.org/

	Introduction
	GCC internals
	MELT
	Conclusions

