
MELT, a Domain Specific Language
to extend the GCC compiler

Basile STARYNKEVITCH
basile@starynkevitch.net (or basile.starynkevitch@cea.fr)

December 9th 2011 - Grenoble - INRIA/LIG/MOAIS seminar

These slides are under a Creative Commons Attribution-ShareAlike 3.0 Unported License

creativecommons.org/licenses/by-sa/3.0 and downloadable fromgcc-melt.org
Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 1 / 100

mailto:basile@starynkevitch.net
mailto:basile.starynkevitch@cea.fr
http://creativecommons.org/licenses/by-sa/3.0/
http://gcc-melt.org/

Table of Contents
1 introduction

disclaimer
why extend a compiler?
about GCC
extending GCC thru plugins
extending GCC with DSLs

2 MELT language and implementation
motivations and major features
MELT values and GCC stuff
some constructs related to C code generation
building and running MELT

3 GCC Internals
memory management inside GCC
optimization passes
plugins

4 MELT language and implementation
MELT values and GCC stuff
some constructs related to C code generation

5 pattern matching in MELT
pattern matching example
matching and patterns
matchers
translating pattern matching
MELT language syntaxBasile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 2 / 100

introduction

Contents
1 introduction

disclaimer
why extend a compiler?
about GCC
extending GCC thru plugins
extending GCC with DSLs

2 MELT language and implementation
motivations and major features
MELT values and GCC stuff
some constructs related to C code generation
building and running MELT

3 GCC Internals
memory management inside GCC
optimization passes
plugins

4 MELT language and implementation
MELT values and GCC stuff
some constructs related to C code generation

5 pattern matching in MELT
pattern matching example
matching and patterns
matchers
translating pattern matching
MELT language syntax

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 3 / 100

introduction disclaimer

disclaimer: opinions are mine only

Opinions expressed here are only mine!
not of my employer (CEA, LIST)
not of the Gcc community
not of funding agencies (e.g. DGCIS)1

I don’t understand or know all of Gcc ;
there are many parts of Gcc I know nothing about.

Beware that I have some strong technical opinions which are not the view
of the majority of contributors to Gcc.

I am not a lawyer ⇒ don’t trust me on licensing issues

(many slides copied from previous talks)

1Work on Melt have been possible thru the GlobalGCC ITEA and OpenGPU FUI collaborative
research projects, with funding from DGCIS

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ♠ 4 / 100

introduction why extend a compiler?

Why extend a compiler?
Extending a compiler is worthwhile:

to add some specific behavior to the compiler
notably, behavior particular to specific needs, which won’t be added inside the compiler

while taking advantage of the existing compiler’s infrastructure
internal representations, framework, optimization passes...

Extensible compilers:
1 LLVM/Clang; a young C++ library (BSD license) providing a common internal

representation and code generators; evolved into a full C and C++ compiler
clang; see llvm.org [v3.0 in december 2011]
The BSD license don’t require a fully free development community; Apple is rumored to
have its specific LLVM

2 GCC (the Gnu Compiler Collection) gcc.gnu.org: a set of legacy compilers
(GPLv3 license) for many languages and systems. [v4.6.2: october 2011]
organized as a bunch of self-sufficient programs; the GPL license entails a living community.

NB: nobody knows well both GCC & LLVM compilers

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 5 / 100

http://llvm.org/
http://gcc.gnu.org/

introduction about GCC

GCC (Gnu Compiler Collection) gcc.gnu.org

perhaps the most used compiler : your phone, camera, dish washer, printer, car,
house, train, airplane, web server, data center, Internet have Gcc compiled code

[cross-] compiles many languages (C, C++, Ada, Fortran, Go, Objective C, Java, ...)
on many systems (GNU/Linux, Hurd, Windows, AIX, ...) for dozens of target
processors (x86, ARM, Sparc, PowerPC, MIPS, C6, SH, VAX, MMIX, ...)

free software (GPLv3+ licensed, FSF copyrighted)

huge (5 or 8? MLOC), legacy (started in 1985) software
still alive and growing (+6% in 2 years)

big contributing community (≈ 400 “maintainers”, mostly full-time professionals)

peer-reviewed development process, but no main architect
⇒ (IMHO) “sloppy” software architecture, not fully modular yet

various coding styles (mostly C & C++ code, with some generated C code)

industrial-quality compiler with powerful optimizations and
diagnostics (lots of tuning parameters and options...)

Current version (october 2011) is gcc-4.6.2

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 6 / 100

http://gcc.gnu.org/

introduction about GCC

Gcc & Melt

Generic / Tree

internal representation[s]
Link Time
Optimizations

GIM
PLE

internal representation[s]

bee.c

foo.cc

bar.f90

cat.adb

dog.o

(LTO)

C front-end

C++ front-end

Fortran front-end

Ada front-end

LTO "front-end"

R
TL i.r.

bee.o

foo.o

bar.o

cat.o

dog.o

250 passes in GCC!

yourpass.meltmelt.so yourpass.so

Melt runtime & translator

GCC MELT

warmelt*.so

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 7 / 100

introduction about GCC

cc1 organization

libiberty
utilities

pass
manager

other
utilities

foo.c le
xe

r,
 p

re
p
ro

c

to
ke

n
s

p
a
rs

e
r

g
e
n
e
ri

c
tr

e
e
s

g
im

p
lifi

e
r

g
im

p
le

s

simple
gimple
passes

g
im

p
le

s
..

.
cf

g
,

ss
a
,

..
.

inter-
procedural

gimple
passes

front-end middle-end

R
T
L

g
e
n

e
ra

to
r

RTL

RTL
optim.
passes

RTL
register allocator
instr. scheduler
peephole optim.

RTL passesa
sm

 e
m

it
te

r

RTL
back-end

foo.s

cc1
overview

Gcc is really cc1
3 layers : front-ends→ a
common middle-end→ back-ends

accepting plugins
utilities & (meta-programming) C
code generators
internal representations
(Generic/Tree, Gimple[/SSA], CFG ...)

pass manager
Ggc (= Gcc garbage collection)

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 8 / 100

introduction about GCC

Ggc (= Gcc garbage collection)

compilers handle complex circular data-structures
⇒ they need a Garbage Collector

Ggc is a simple mark & sweep precise garbage collector
explicitly invoked between passes (by pass manager)

Ggc don’t handle local pointers (while other G-Cs often do)

not run inside passes (even with memory pressure by lots of allocation)

started as a quick hack to manage long-living Gcc typed data (common to
several passes); most Gcc representations are handled by Ggc.
using GTY annotations on [≈ 1800] data structures & global variables :
/* Mapping from indices to trees. */ // from lto-streamer.h
struct GTY(()) lto_tree_ref_table {

/* Array of referenced trees . */

tree * GTY((length ("%h.size"))) trees;
/* Size of array. */

unsigned int size; };

gengtype code generator produces marking routines from GTY annotations

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 9 / 100

introduction extending GCC thru plugins

plugins and extensibility

infrastructure for plugins started in gcc-4.5 (april 2010)

cc1 can dlopen user plugins2

plugin hooks provided:
1 a plugin can add its own new passes (or remove some passes)
2 a plugin can handle events (e.g. Ggc start, pass start, type declaration)
3 a plugin can accept its own #pragma-s or __attribute__ etc...
4 . . .

plugin writers need to understand Gcc internals
plugin may provide customization and application- or project- specific
features:

1 specific warnings (e.g. for untested fopen ...)
2 specific optimizations (e.g. fprintf(stdout, ...) → printf(...)
3 code refactoring, navigation help, metrics
4 etc etc . . .

coding plugins in C may be not cost-effective
higher-level languages are welcome!

2Gcc plugins should be free software, GPLv3 compatible
Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 10 / 100

introduction extending GCC with DSLs

extending GCC with an existing scripting language

A nearly impossible task, because of impedance mismatch:
rapid evolution of Gcc

using a a scripting language like Ocaml, Python3 or Javascript4 is difficult,
unless focusing on a tiny part of Gcc

mixing several unrelated G-Cs (Ggc and the language one) is error-prone
the Gcc internal API is ill-defined, and has non “functional” sides:

1 extensive use of C macros
2 ad-hoc iterative constructs
3 lots of low-level data structures (possible performance cost to access them)

the Gcc API is huge, and not well defined (a bunch of header files)
needed glue code is big and would change often
Gcc extensions need pattern-matching (on existing Gcc internal
representations like Gimple or Tree-s) and high-level programming
(functional/applicative, object-orientation, reflection).

3See Dave Malcom’s Python plugin
4See TreeHydra in Mozilla

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 11 / 100

MELT language and implementation

Contents
1 introduction

disclaimer
why extend a compiler?
about GCC
extending GCC thru plugins
extending GCC with DSLs

2 MELT language and implementation
motivations and major features
MELT values and GCC stuff
some constructs related to C code generation
building and running MELT

3 GCC Internals
memory management inside GCC
optimization passes
plugins

4 MELT language and implementation
MELT values and GCC stuff
some constructs related to C code generation

5 pattern matching in MELT
pattern matching example
matching and patterns
matchers
translating pattern matching
MELT language syntax

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 12 / 100

MELT language and implementation motivations and major features

Why MELT?

embedding an existing DSL [implementation] is inpractical.

re-implementing a dynamic language (e.g. Python, Lua, or Scheme-like) don’t fit well
into Gcc practice

designing a statically typed language [with type inference] would require type
formalization of Gcc (intractable).

Melt5 is an ad-hoc Lisp-like domain specific language translated to C code
(suitable with Gcc), to develop Gcc extensions

Melt can handle existing native Gcc stuff (without boxing) and [boxed] Melt
values

Melt provides linguistic devices describing how C is generated

Melt has high-level programming traits for functional/applicative, object
oriented, reflective programming styles

Melt has extensible pattern-matching compatible with Gcc internal
representations

Melt [Ggc compatible] runtime and implementation was incrementally
co-designed with the language (bootstrapped translator)

5originally for “Middle End Lisp Translator”
Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 13 / 100

MELT language and implementation motivations and major features

MELT implementation : translator

Melt translator (Melt→ C)
implemented in Melt (so exercises well most of Melt)
(initially, a sub-set was translated by a Lisp program)

svn source code repository contains both Melt source
melt/warmelt*.melt [43 kloc] (of the translator) and its C translation
melt/generated/warmelt*.c [1440 kloc]

translation (Melt→ C) is quick: the bottleneck is the compilation of the
generated C code
can translate in-memory Melt expressions (inside Melt heap) -or a
*.melt file- to C
co-designed with Melt runtime: generated C code respects runtime
requirements

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 14 / 100

MELT language and implementation motivations and major features

MELT implementation : runtime and utilities

Melt runtime [21 kloc of C]

Melt copying garbage collector for Melt values
copy into Ggc heap - partly Melt generated

runs make to compile generated C into *.so

dlopen-s Melt modules
provides Gcc plugin hooks
boxing [mostly Melt generated] of stuff into Melt values

Melt utilities
“standard” library (in Melt)
glue (in Melt), e.g. for pattern matching Gcc trees or gimples
small Gcc passes in Melt, e.g. pass checking Melt runtime
more to come (OpenCL generation)

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 15 / 100

MELT language and implementation MELT values and GCC stuff

MELT values and GCC stuff

Melt deals with two kinds of things:
1 Melt first-class (dynamically typed) values

objects, tuples, lists, closures, boxed strings, boxed gimples, boxed trees, homogenous
hash-tables. . .

2 existing Gcc stuff (statically and explicitly typed)
raw long-s, tree-s, gimple-s as already known by Gcc . . .

Essential distinction (mandated by lack of polymorphism of Ggc):

Things = Values ∪ Stuff

Melt code explicitly annotates stuff with c-types like :long, :tree . . . (and
:value for values, when needed).
handling Melt values is preferred (and easier) in Melt code.
Melt argument passing is typed

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 16 / 100

MELT language and implementation MELT values and GCC stuff

Melt copying garbage collection for values

copying Melt GC well suited for fast allocation6 and many temporary
(quickly dying) values
live young values copied into Ggc heap (but needs write barrier)
Melt GC requires normalization z := φ(ψ(x), y)→ τ := ψ(x); z := φ(τ, y)
Melt GC handles locals and may trigger Ggc at any time
well suited for generated C code
hand-written code for Melt value is cumbersome
old generation of values is the Ggc heap→ built-in compatibility of Melt
GC with Ggc

Melt call frames are known to both Melt GC & Ggc
call frames are singly-linked struct-ures.

6Melt values are allocated in a birth region by a pointer increment; when the birth
region is full, live values are copied out, into Ggc heap, then the birth region is
de-allocated.

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 17 / 100

MELT language and implementation MELT values and GCC stuff

Melt value taxonomy

discr

gimple

boxed gimple

3-tuple

discr

value 1

value 2

value 3

3 (length)

class

field 1

field 2

field 3

3
(#fields)

30017
(magic)

object

discr hd tl discr hd tl

pair pair

discr hd

pair

discr first lastlist

GCC MELT values

 hash 0x57de2f

values boxing some stuff
objects (single-inheritance; classes
are also objects)

tuples, lists and pairs
closures and routines
homogenous hash-tables (e.g.
all keys are tree stuff, associated to
a non-null value)

etc . . .

Each value has a discriminant
(which for an object is its class).

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 18 / 100

MELT language and implementation MELT values and GCC stuff

Melt values vs Gcc stuff

Melt handles first-citizen Melt values:
values like many scripting languages have (Scheme, Python, Ruby, Perl,
even Ocaml . . .)
Melt values are dynamically typed7, organized in a lattice; each Melt
value has its discriminant (e.g. its class if it is an object)
you should prefer dealing with Melt values in your Melt code
values have their own garbage-collector (above Ggc), invoked implicitly

But Melt can also handle ordinary Gcc stuff:
stuff is usually any GTY-ed Gcc raw data, e.g. tree, gimple, edge,
basic_block or even long

stuff is explicitly typed in Melt code thru c-type annotations like :tree,
:gimple etc.
adding new ctypes is possible (some of the Melt runtime is generated)

7Because designing a type-system friendly with Gcc internals mean making a type
theory of Gcc internals!

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 19 / 100

MELT language and implementation MELT values and GCC stuff

Things = (Melt Values) ∪ (Gcc Stuff)

things Melt values Gcc stuff
memory
manager

Melt GC (implicit, as needed,
even inside passes)

Ggc (explicit, between passes)

allocation quick, in the birth zone ggc_alloc, by various
zones

GC tech-
nique

copying generational (old→
ggc)

mark and sweep

GC time O(λ) λ = size of young live ob-
jects

O(σ) σ = total memory size

typing dynamic, with discriminant static, GTY annotation
GC roots local and global variables only global data
GC suited
for

many short-lived temporary
values

quasi-permanent data

GC usage in generated C code in hand-written code
examples lists, closures, hash-maps,

boxed tree-s, objects . . .
raw tree stuff, raw gimple
. . .

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 20 / 100

MELT language and implementation MELT values and GCC stuff

Melt garbage collection

co-designed with the Melt language
co-implemented with the Melt translator
manage only Melt values
all Gcc raw stuff is still handled by Ggc

copying generational Melt garbage collector (for Melt values only):
1 values quickly allocated in birth region

(just by incrementing a pointer; a Melt GC is triggered when the birth region is full.)
2 handle well very temporary values and local variables
3 minor Melt GC: scan local values (in Melt call frames), copy and move them

out of birth region into Ggc heap
4 full Melt GC = minor GC + ggc_collect (); 8

5 all local pointers (local variables) are in Melt frames
6 needs a write barrier (to handle old→ young pointers)
7 requires tedious C coding: call frames, barriers, normalizing nested

expressions (z = f(g(x),y)→ temporary τ = g(x); z=f(τ, y);)
8 well suited for generated C code

8So Melt code can trigger Ggc collection even inside Gcc passes!

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 21 / 100

MELT language and implementation MELT values and GCC stuff

Melt Lisp-like look

Melt has a lisp-like syntax9, so almost every operator is in parenthesis:

(operator operands ...)

So in Melt (f) is the call of function f without arguments like f() is in C
in Melt function call (f) 6≡ f function value, like in C function call f() 6≡ f function address

Melt is expression-based. Expressions are evaluated and produce a result:
2× 3 + 5 is (+i (*i 2 3) 5)⇒ 11

*i and +i are names of primitive arithmetic operations handling raw long stuff.

Control operations usally have names inspired by existing Lisp dialects
if cond lambda let10 letrec defun define definstance setq

Primitives and standard functions usually have names different of Lisp habits
(no car, cons, string?, > in Melt; but pair_head, list, >i, make_integerbox)

9Because it is simple to parse, and because Emacs supports it.
10Melt’s let is sequential, like Scheme’s let*

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 22 / 100

MELT language and implementation some constructs related to C code generation

primitives and macro-strings

Definition of (stuff) addition:

(defprimitive +i (:long a b) :long
#{($A) + ($B)}#)

Macro-strings #{...}# mix C code with Melt symbols $A, used as “templates”

Primitives have a typed result and arguments.

Since locals are initially cleared, many Gcc related primitives test for null (e.g.
tree or gimple) pointers, e.g.

(defprimitive gimple_seq_first_stmt (:gimple_seq gs) :gimple
#{(($GS)?gimple_seq_first_stmt(($GS)):NULL) }#)

:void primitives translate to C statement blocks; other primitives are
translated to C expressions

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 23 / 100

MELT language and implementation some constructs related to C code generation

“hello world” in Melt with a code chunk

;; -*- lisp -*- file helloworld.melt
(code_chunk hello ;;state symbol
#{ int $HELLO#_cnt =0;
$HELLO#_lab:printf("hello world %d\n",$HELLO#_cnt++);
if ($HELLO#_cnt <2) goto $HELLO#_lab; }#)

The “state symbol” hello is expanded to a unique C identifier (e.g. HELLO_1 the
first time, HELLO_2 the second one, etc...), e.g. generates in C

int HELLO_1_cnt =0;
HELLO_1_lab:printf("hello world %d\n", HELLO_1_cnt++);
if (HELLO_1_cnt <2) goto HELLO_1__lab;

State symbols are really useful to generate unique identifiers in nested
constructions like iterations.

code_chunk is for Melt→ C, like asm is for C→ assembler

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 24 / 100

MELT language and implementation some constructs related to C code generation

c-iterators to generate iterative statements
Using an c-iterator
;; apply a function f to each boxed gimple in a gimple seq gseq
(defun do_each_gimpleseq (f :gimple_seq gseq)
(each_in_gimpleseq
(gseq) ;; the input of the iteration
(:gimple g) ;; the local formals
(let ((gplval (make_gimple discr_gimple g))) ;; boxing a raw Gimple
(f gplval))))

Defining the c-iterator
(defciterator each_in_gimpleseq

(:gimple_seq gseq) ;start formals
eachgimplseq ;state symbol
(:gimple g) ;local formals
;;; before expansion
#{/*$EACHGIMPLSEQ*/ gimple_stmt_iterator gsi_$EACHGIMPLSEQ;
if ($GSEQ) for (gsi_$EACHGIMPLSEQ = gsi_start ($GSEQ);

!gsi_end_p (gsi_$EACHGIMPLSEQ);
gsi_next (&gsi_$EACHGIMPLSEQ)) {

$G = gsi_stmt (gsi_$EACHGIMPLSEQ); }#
;;; after expansion
#{ } }#)

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 25 / 100

MELT language and implementation building and running MELT

building MELT - requirements

(the experimental MELT branch is built like the GCC trunk)

The MELT plugin (version 0.9.2.b for GCC 4.6) requires [6Gb RAM, 0.5Gb disk]

a GCC 4.6 compiler [on Linux] with plugins enabled
on Debian aptitude install gcc-4.6 g++-4.6

GCC 4.6 dependencies (e.g. Parma Polyhedra Library, gawk, texi2html, ...)
on Debian aptitude build-dep gcc-4.6 g++-4.6

GCC 4.6 plugin development files
on Debian aptitude install gcc-4.6-plugin-dev

These are needed when building melt.so and when running it
because Melt may fork a compilation of generated C code when running!

your Melt extensions (or GCC plugins) [nearly] should be GPLv3 compatible
http://www.gnu.org/licenses/gcc-exception.html

Legal prerequisites gcc.gnu.org/contribute.html (take time!!)
(copyright transfer to FSF needed before submitting even small patches to MELT or to GCC)

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 26 / 100

http://www.gnu.org/licenses/gcc-exception.html
http://gcc.gnu.org/contribute.html#legal

MELT language and implementation building and running MELT

compiling the melt.so [meta-] plugin

1 retrieve & untar the latest MELT plugin source
wget http://gcc-melt.org/melt-0.9.2-plugin-for-gcc-4.6.tgz
tar xzvf melt-0.9.2-plugin-for-gcc-4.6.tgz

2 if you want, edit the Makefile (a symlink to MELT-Plugin-Makefile):
emacs melt-0.9.2-plugin-for-gcc-4.6/MELT-Plugin-Makefile

(you probably don’t need to edit it)

3 run a sequential make (lasting about 8 minutes) :
cd melt-0.9.2-plugin-for-gcc-4.6; make

the melt.so plugin for GCC is built (from melt-runtime.c ...)
it is used to regenerate the Melt translator from the warmelt*.melt source
the generated warmelt*.c are compiled into warmelt*.so modules
the translation warmelt*.melt→ warmelt*.c→ warmelt*.so is
repeated several times (bootstrapping)
the extra standard modules xtramelt*.melt are also translated
the Melt runtime is re-compiled with a Melt extension checking its coding
style.

Melt should be re-built for even a tiny GCC change (i.e. 4.6.1→ 4.6.2)

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 27 / 100

http://gcc-melt.org/melt-0.9.2-plugin-for-gcc-4.6.tgz

MELT language and implementation building and running MELT

installing the melt.so [meta-] plugin

after successful compilation, in the same
melt-0.9.2-plugin-for-gcc-4.6/ directory:

1 run the installer with a temporary DESTDIR
make install DESTDIR=/tmp/meltinst

2 copy that directory as root:
sudo cp -v -d -R /tmp/meltinst/ /

On my Debian system it will populate
/usr/lib/gcc/x86_64-linux-gnu/4.6/plugin/ with ≈ 670 files (total 0.5Gb)

like include/melt-run.h or
melt-modules/xtramelt-ana-base.e1807af85330ba5b5359e8208236c7c5.quicklybuilt.so or
melt-sources/xtramelt-ana-base+02.c or
melt-sources/xtramelt-ana-base.melt or melt-module.mk and the Gcc plugin for
Melt itself melt.so

NB. Melt makefiles could be better. Help and patches are welcome!

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 28 / 100

MELT language and implementation building and running MELT

Running Melt - program arguments

As for every Gcc plugin, you need to ask for it with
gcc-4.6 -fplugin=melt

The melt.so plugin is actually dlopen-ed by the cc1 or cc1plus compiler
program, not its gcc-4.6 driver. You usually need a *.c file to get cc1 started.

Melt won’t do anything useful without several additional plugin arguments,
named -fplugin-arg-melt-α, e.g.

-fplugin-arg-melt-mode= to specify the (mandatory) mode in which
Melt should run. Melt don’t do anything without a mode. Try
-fplugin-arg-melt-mode=help

-fplugin-arg-melt-workdir= to give a work directory (containing
generated .c and .so files).

A Makefile using some Melt extension probably wants
CFLAGS += -fplugin=melt \

-fplugin-arg-melt-workdir=my-melt-work-dir/

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 29 / 100

MELT language and implementation building and running MELT

Running helloworld.melt directly

% gcc-4.6 -fplugin=melt -fplugin-arg-melt-mode=runfile \
-fplugin-arg-melt-arg=helloworld.melt -c empty.c

cc1: note: MELT generating C code of module �
/tmp/fileRZNNjT-GccMeltTmp-110f7f5b/helloworld

cc1: note: MELT generated new file �
/tmp/fileRZNNjT-GccMeltTmp-110f7f5b/helloworld.c

cc1: note: MELT generated C code of module �
/tmp/fileRZNNjT-GccMeltTmp-110f7f5b/helloworld �
with 0 secondary files in 0 CPU millisec.

MELT is building binary helloworld from source �
/tmp/fileRZNNjT-GccMeltTmp-110f7f5b/helloworld with �
flavor quicklybuilt

cc1: note: MELT plugin has built module helloworld flavor quicklybuilt �
in /home/basile/MELT-InriaGrenoble

hello world 0
hello world 1
cc1: note: MELT removed 4 temporary files from �

/tmp/fileRZNNjT-GccMeltTmp-110f7f5b

Some C files are generated and compiled and dlopen-ed by Melt
(inside a temporary directory, cleaned up before cc1 exits)

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 30 / 100

MELT language and implementation building and running MELT

Making a helloworld.optimized.so module

% gcc-4.6 -fplugin=melt \
-fplugin-arg-melt-workdir=my-melt-work-dir/ \
-fplugin-arg-melt-mode=translateoptimized \
-fplugin-arg-melt-arg=helloworld.melt -c empty.c

cc1: note: MELT generating C code of module helloworld
cc1: note: MELT generated new file helloworld.c in �

/home/basile/MELT-InriaGrenoble
cc1: note: MELT generated C code of module helloworld �

with 0 secondary files in 0 CPU millisec.
MELT is building binary helloworld from source helloworld with �

flavor optimized
cc1: note: MELT plugin has built module helloworld flavor optimized in �

/home/basile/MELT-InriaGrenoble

% ls -l helloworld*
-rw-r--r-- 1 basile basile 11748 Dec 7 16:28 helloworld.c
-rw-r--r-- 1 basile basile 11748 Dec 7 16:28 helloworld.c%
-rw-r--r-- 1 basile basile 187 Dec 7 10:46 helloworld.melt
-rw-r--r-- 1 basile basile 1429 Dec 7 16:28 helloworld+meltdesc.c
lrwxrwxrwx 1 basile basile 149 Dec 7 16:28 helloworld.optimized.so -> �
/home/basile/MELT-InriaGrenoble/my-melt-work-dir/ �
helloworld.d8216f8d73349ea62ba76a0c0f5a128f.optimized.so

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 31 / 100

MELT language and implementation building and running MELT

Using the helloworld.optimized.so module

% gcc-4.6 -fplugin=melt \
-fplugin-arg-melt-workdir=my-melt-work-dir/ \
-fplugin-arg-melt-mode=nop \
-fplugin-arg-melt-extra=./helloworld -c empty.c

hello world 0
hello world 1

A mode is still needed (e.g. nop). Often, your Melt modules will install
their own modes.
one or several colon-separated extra modules11 can be specified
no compilation of generated C code happens (so faster)
the generated C code is needed: conceptually, it is loaded as the
modules, and the *.so are “cached”
the file helloworld+meltdesc.c is mostly parsed meta-data about
the generated C files (but also compiled as C)

11In addition of the standard ones!
Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 32 / 100

MELT language and implementation building and running MELT

MELT modules flavors

A given Melt module (the µ.so shared object dlopen-ed by the melt.so
meta-plugin) comes with different flavors (different ways to build the µ.so
from µ*.c, see melt-module.mk file)

quicklybuilt flavor (for development): generated C code quickly
compiled without (= -O0) optimization, but with #line directives and
Melt debugging support.
Use -fplugin-arg-melt-mode=translatequickly

optimized flavor (for production use): compiled with (= -O1)
optimization, but with #line directives and without Melt debugging
support -fplugin-arg-melt-mode=translateoptimized

debugnoline flavor (for low level debugging): compiled with (= -g)
debugging information, without #line directives, and with Melt
debugging support. Rarely useful to debug a Melt module with gdb
-fplugin-arg-melt-mode=translatetodebug

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 33 / 100

MELT language and implementation building and running MELT

Debugging hints

Two useful debug-related program arguments:
1 -fplugin-arg-melt-debug : if given, a lot of debugging output

appear (except with optimized flavor of modules)
Hint: run your Melt extension inside an Emacs shell buffer

2 -fplugin-arg-melt-debugskip=1234 to skip the first 1234
debugging messages.

Several debugging constructs in Melt (enabled with flavors, and at run time) :
(debug any arguments) ; use it often!
(assert_msg "message-string" (assertion-test)) ; when the assertion-test
fails, a backtrace stack is printed with the "message-string"

(shortbacktrace_dbg "message-string" max-depth) to print the
backtrace stack

Using gdb is rarely needed (only for SIGSEGV) and painful (debugnoline flavor)

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 34 / 100

MELT language and implementation building and running MELT

The helloworld+meltdesc.c “meta-data”

/** GENERATED MELT DESCRIPTOR FILE helloworld+meltdesc.c - �
** NEVER EDIT OR MOVE THIS, IT IS GENERATED & PARSED! **/

/* version of the GCC compiler & MELT runtime generating this */
const char melt_genversionstr[]="4.6 20111121 () [MELT plugin] MELT_0.9.2";
const char melt_versionmeltstr[]="0.9.2 [melt-branch_revision_182101]";
/* source name & real path of the module */
/*MELTMODULENAME helloworld */
const char melt_modulename[]="helloworld";
const char melt_modulerealpath[]="/home/basile/MELT-InriaGrenoble/helloworld";
/* MELT generation timestamp */
const char melt_gen_timestamp[]="Thu Dec 8 14:24:36 2011 CET";
const long long melt_gen_timenum=1323350676;
const char melt_build_timestamp[]= __DATE__ "@" __TIME__;
/* hash of preprocessed melt-run.h generating this */
const char melt_prepromd5meltrun[]="d41d8cd98f00b204e9800998ecf8427e";
/* hexmd5checksum of primary C file */
const char melt_primaryhexmd5[]="725c130e6c7eb8780c2e7f76c58eae0e";
/* hexmd5checksum of secondary C files */
const char* const melt_secondaryhexmd5tab[]= (const char*)0 ;
/* last index of secondary files */
const int melt_lastsecfileindex=0;
/* cumulated checksum of primary & secondary files */
const char melt_cumulated_hexmd5[]="725c130e6c7eb8780c2e7f76c58eae0e";
/* end of melt descriptor file */

NB: Melt parses & (conceptually) loads such files (the *.so modules are cached)
Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 35 / 100

MELT language and implementation building and running MELT

Some examples

Look at:
the simple “high-order” iterator function multiple_every file
melt/warmelt-base.melt near line 1435
its C translation in meltrout_18_warmelt_base_MULTIPLE_EVERY
file melt/generated/warmelt-base+01.c near line 4835; notice the
Melt frame and normalization
the Gcc pass meltframe (to check the melt-runtime.c file) coded in
Melt file melt/xtramelt-ana-simple.melt lines 1090-1368:

1 pass gate and execute functions
2 Gimple and Tree pattern matching
3 inserting the pass inside existing passes

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 36 / 100

GCC Internals

Contents
1 introduction

disclaimer
why extend a compiler?
about GCC
extending GCC thru plugins
extending GCC with DSLs

2 MELT language and implementation
motivations and major features
MELT values and GCC stuff
some constructs related to C code generation
building and running MELT

3 GCC Internals
memory management inside GCC
optimization passes
plugins

4 MELT language and implementation
MELT values and GCC stuff
some constructs related to C code generation

5 pattern matching in MELT
pattern matching example
matching and patterns
matchers
translating pattern matching
MELT language syntax

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 37 / 100

GCC Internals

Why is understanding GCC difficult?

“Gcc is not a compiler but a compiler generation framework”: (U.Khedker)

a lot of C code inside Gcc is generated at building time.
Gcc has many ad-hoc code generators
(some are simple awk scripts, others are big tools coded in many KLOC-s of C)
Gcc has several ad-hoc formalisms (perhaps call them domain specific languages)

Gcc is growing gradually and does have some legacy (but powerful) code
Gcc has no single architect (“benevolent dictator”):
(no “Linus Torvalds” equivalent for Gcc)

Gcc source code is heterogenous:
coded in various programming languages (C, C++, Ada . . .)
coded at very different times, by many people (with various levels of expertise).
no unified naming conventions
(my opinion only:) still weak infrastructure (but powerful)
not enough common habits or rules about: memory management, pass
roles, debug help, comments, dump files . . .

Gcc code is sometimes quite messy (e.g. compared to Gtk).

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 38 / 100

GCC Internals

What you should read on GCC

You should (find lots of resources on the Web, then) read:

the Gcc user documentation
http://gcc.gnu.org/onlinedocs/gcc/, giving:

how to invoke gcc (all the obscure optimization flags)
various language (C, C++) extensions, including attributes and builtins.
how to contribute to Gcc and to report bugs

the Gcc internal documentation
http://gcc.gnu.org/onlinedocs/gccint/, explaining:

the overall structure of Gcc and its pass management
major (but not all) internal representations (notably Tree, Gimple, RTL . . .).
memory management, GTY annotations, gengtype generator
interface available to plugins
machine and target descriptions
LTO internals

the source code, mostly header files *.h, definition files *.def, option
files *.opt. Don’t be lost in Gcc monster source code.12

12You probably should avoid reading many *.c code files at first.

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 39 / 100

http://gcc.gnu.org/onlinedocs/gcc/
http://gcc.gnu.org/onlinedocs/gccint/

GCC Internals

utilities and infrastructure
gcc is only a driver (file gcc/gcc.c). Most things happen in cc1. See file
gcc/toplev.c for the toplev_main function starting cc1 and others.

There are many infrastructures and utilities in Gcc

1 libiberty/ to abstract system dependencies
2 the Gcc Garbage Collector i.e. Ggc:

a naive precise mark-and sweep garbage collector
sadly, not always used (many routines handle data manually, with explicit free)
runs only between passes, so used for data shared between passes
don’t handle any local variables /
about 1800 struct inside Gcc are annotated with GTY annotations.
the gengtype generator produces marking routines in C out of GTY

I love the idea of a garbage collector (but others don’t).
I think Ggc should be better, and be more used.

3 diagnostic utilities
4 preprocessor library libcpp/
5 many hooks (e.g. language hooks to factorize code between C, C++, ObjectiveC)

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 40 / 100

GCC Internals

cc1 front-end

The front-end (see function compile_file in gcc/toplev.c) is reading the
input files of a translation unit (e.g. a foo.c file and all #include-d *.h files).

language specific hooks are given thru lang_hooks global variable, in
$GCCSOURCE/gcc/langhooks.h

$GCCSOURCE/libcpp/ is a common library (for C, C++, Objective C...) for
lexing and preprocessing.
C-like front-end processing happens under $GCCSOURCE/gcc/c-family/
parsing happens in $GCCSOURCE/gcc/c-parser.c and
$GCCSOURCE/gcc/c-decl.c, using manual recursive descent
parsing techniques13 to help syntax error diagnostics.
abstract syntax Tree-s [AST] (and Generic to several front-ends)

In gcc-4.6 plugins cannot enhance the parsed language
(except thru events for #pragma-s or __attribute__ etc . . .)

13Gcc don’t use LALR parser generators like yacc or bison for C.
Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 41 / 100

GCC Internals

GCC middle-end

The middle-end is the most important14 (and bigger) part of Gcc

it is mostly independent of both the source language and of the target
machine (of course, sizeof(int) matters in it)

it factorizes all the optimizations reusable for various sources
languages or target systems
it processes (i.e. transforms and enhances) several middle-end internal
(and interleaved) representations, notably

1 declarations and operands represented by Tree-s
2 Gimple representations (“3 address-like” instructions)
3 Control Flow Graph informations (Edges, Basic Blocks, ...)
4 Data dependencies
5 Static Single Assignment (SSA) variant of Gimple
6 many others

I [Basile] am more familiar with the middle-end than with front-ends or back-ends.

14Important to me, since I am a middle-end guy!

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 42 / 100

GCC Internals

Middle End and Link Time Optimization

With LTO, the middle-end representations are both input and output.

LTO enables optimization across several compilation units, e.g. inlining of
a function defined in foo.cc and called in bar.c
(LTO existed in old proprietary compilers, and in LLVM)

when compiling source translation units in LTO mode, the generated
object *.o file contains both:

(as always) binary code, relocation directives (to the linker), debug
information (for gdb)
(for LTO) summaries, a simplified serialized form of middle-end
representations

when “linking” these object files in LTO mode, lto1 is a “front-end” to this
middle-end data contained in *.o files. The program lto1 is started by
the gcc driver (like cc1plus . . .)
in WHOPR mode (whole program optimization), LTO is split in three stages
(LGEN = local generation, in parallel; sequential WPA = whole program
analysis; LTRANS = local transformation, in parallel).

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 43 / 100

GCC Internals

GCC back-ends

The back-end15 is the last layer of Gcc (specific to the target machine):

it contains all optimizations (etc . . .) particular to its target system
(notably peepwhole target-specific optimizations).
it schedules (machine) instructions
it allocates registers16

it emits assembler code (and follows target system conventions)

it transforms gimple (given by middle-end) into back-end representations,
notably RTL (register transfer language)
it optimizes the RTL representations
some of the back-end C code is generated by machine descriptions
*.md files.

/ I [Basile] don’t know much about back-ends
15A given cc1 or lto1 has usually one back-end (except multilib ie -m32 vs -m64 on

x86-64). But Gcc source release has many back-ends!
16Register allocation is a very hard art. It has been rewritten many times in Gcc.

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 44 / 100

GCC Internals

“meta-programming” C code generators in GCC

Gcc has several internal C code generators (built in $GCCBUILD/gcc/build/):

gengtype for Ggc, generating marking code from GTY annotations
genhooks for target hooks, generating target-hooks-def.h from
target.def

genattrtab, genattr, gencodes, genconditions, gencondmd,
genconstants, genemit, genenums, genextract, genflags,
genopinit, genoutput, genpreds, to generate machine attributes
and code from machine description *.md files.
genautomata to generate pipeline hazard automaton for instruction
scheduling from *.md

genpeep to generate peephole optimizations from *.md

genrecog to generate code recognizing RTL from *.md

etc . . .

(genautomata, gengtype, genattrtab are quite big generators)

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 45 / 100

GCC Internals

GCC pass manager and passes

The pass manager is coded in $GCCSOURCE/gcc/passes.c and
tree-optimize.c with tree-pass.h

There are many (≈ 250) passes in Gcc:
The set of executed passes depend upon optimization flags (-O1 vs -O3 ...)
and of the translation unit.

middle-end passes process Gimple (and other representations)
simple Gimple passes handle Gimple code one function at a time.
simple and full IPA Gimple passes do Inter-Procedural Analysis
optimizations.

back-end passes handle RTL etc . . .

Passes are organized in a tree. A pass may have sub-passes, and could be
run several times.

Both middle-end and back-end passes go into libbackend.a!

Plugins can add (or remove, or monitor) passes.

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 46 / 100

GCC Internals memory management inside GCC

Garbage Collection inside GCC

Ggc is implemented in $GCCSOURCE/gcc/ggc*.[ch]
17 and thru the

gengtype generator $GCCSOURCE/gcc/gengtype*.[chl].

the GTY annotation (on struct and global or static data) is used to
“declare” Ggc handled data and types.
gengtype generates marking and allocating routines in gt-*.h and
gtyp*.[ch] files (in $GCCBUILD/gcc/)

ggc_collect (); calls Ggc; it is mostly called by the pass manager.

/ local pointers (variables inside Gcc functions) are not preserved by Ggc
so ggc_collect can’t be called18 everywhere!
⇒ passes have to copy (pointers to their data) to static GTY-ed variables
so Ggc is unfortunately not systematically used
(often data local to a pass is manually managed & explicitly freed)

17ggc-zone.c is often unused.
18Be very careful if you need to call ggc_collect yourself inside your pass!

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 47 / 100

GCC Internals memory management inside GCC

Why real compilers need garbage collection?

compilers have complex internal representations (≈ 1800 GTY-ed types!)
compilers are become very big and complex programs
it is difficult to decide when a compiler data can be (manually) freed
circular data structures (e.g. back-pointers from Gimple to containing Basic Blocks)
are common inside compilers; compiler data are not (only) tree-like.
liveness of a data is a global (non-modular) property!
garbage collection techniques are mature
(garbage collection is a global trait in a program)

memory is quite cheap

In my (strong) opinion, Ggc is not very good19 -but cannot and shouldn’t be
avoided-, and should systematically be used, so improved.
Even today, some people manually sadly manage their data in their pass.

19Chicken & egg issue here: Ggc not good enough ⇒ not very used ⇒ not improved!

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 48 / 100

GCC Internals memory management inside GCC

using Ggc in your C code for Gcc

Annotate your struct declarations with GTY in your C code:

// from $GCCSOURCE/gcc/tree.h
struct GTY ((chain_next ("%h.next"), chain_prev ("%h.prev")))

tree_statement_list_node {
struct tree_statement_list_node *prev;
struct tree_statement_list_node *next;
tree stmt; // The tree-s are GTY-ed pointers

};

struct GTY(()) tree_statement_list {
struct tree_typed typed;
struct tree_statement_list_node *head;
struct tree_statement_list_node *tail;

};

Likewise for global or static variables:

extern GTY(()) VEC(alias_pair,gc) * alias_pairs;

Notice the poor man’s vector “template” thru the VEC “mega”-macro (from

$GCCSOURCE/gcc/vec.h) known by gengtype

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 49 / 100

GCC Internals memory management inside GCC

GTY annotations

http://gcc.gnu.org/onlinedocs/gccint/Type-Information.html

Often empty, these annotations help to generate good marking routines:

skip to ignore a field
list chaining with chain_next and chain_previous

[variable-] array length with length and variable_size

discriminated unions with descr and tag . . .
poor man’s genericity with param2_is or use_params etc . . .
marking hook routine with mark_hook

etc . . .

From tree.h gengtype is generating gt-tree.h which is #include-d
from tree.c

Pre Compiled Headers (PCH)20 also use gengtype & GTY.

20PCH is a feature which might be replaced by “pre-parsed headers” in the future.

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 50 / 100

http://gcc.gnu.org/onlinedocs/gccint/Type-Information.html

GCC Internals memory management inside GCC

Example of gengtype generated code
Marking routine:
// in $GCCBUILD/gcc/gtype-desc.c
void gt_ggc_mx_tree_statement_list_node (void *x_p) {

struct tree_statement_list_node * x = (struct tree_statement_list_node *)x_p;
struct tree_statement_list_node * xlimit = x;
while (ggc_test_and_set_mark (xlimit))
xlimit = ((*xlimit).next);

if (x != xlimit)
for (;;) {

struct tree_statement_list_node * const xprev = ((*x).prev);
if (xprev == NULL) break;
x = xprev;
(void) ggc_test_and_set_mark (xprev);

}
while (x != xlimit) {

gt_ggc_m_24tree_statement_list_node ((*x).prev);
gt_ggc_m_24tree_statement_list_node ((*x).next);
gt_ggc_m_9tree_node ((*x).stmt);
x = ((*x).next);

} }

Allocators:
// in $GCCBUILD/gcc/gtype-desc.h
#define ggc_alloc_tree_statement_list() \

((struct tree_statement_list *)(ggc_internal_alloc_stat (sizeof (struct tree_statement_list) MEM_STAT_INFO)))
#define ggc_alloc_cleared_tree_statement_list() \

((struct tree_statement_list *)(ggc_internal_cleared_alloc_stat (sizeof (struct tree_statement_list) MEM_STAT_INFO)))
#define ggc_alloc_vec_tree_statement_list(n) \

((struct tree_statement_list *)(ggc_internal_vec_alloc_stat (sizeof (struct tree_statement_list), n MEM_STAT_INFO)))

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ♠ 51 / 100

GCC Internals memory management inside GCC

Ggc work

The Ggc garbage collector is a mark and sweep precise collector, so:

each Ggc-aware memory zone has some kind of mark
first Ggc clears all the marks
then Ggc marks all the [global or static] roots21, and “recursively” marks all
the (still unmarked) data accessible from them, using routines generated by
gengtype

at last Ggc frees all the unmarked memory zones

Complexity of Ggc is ≈ O(m) where m is the total memory size.

When not much memory has been allocated, ggc_collect returns
immediately and don’t really run Ggc22

Similar trick for pre-compiled headers: compiling a *.h file means parsing it
and persisting all the roots (& data accessible from them) into a compiled header.

21That is, extern or static GTY -ed variables.
22Thanks to ggc_force_collect internal flag.

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 52 / 100

GCC Internals memory management inside GCC

allocating GTY-ed data in your C code

gengtype also generates allocating macros named ggc_alloc*. Use them
like you would use malloc . . .

// from function tsi_link_before in $GCCSOURCE/gcc/tree-iterator.c
struct tree_statement_list_node *head, *tail;
// ...
{

head = ggc_alloc_tree_statement_list_node ();
head->prev = NULL; head->next = NULL; head->stmt = t;
tail = head;

}

Of course, , you don’t need to free that memory: Ggc will do it for you.
GTY-ed allocation never starts automatically a Ggc collection23, and has some little
cost. Big data can be GTY-allocated. Variable-sized data allocation macros get as
argument the total size (in bytes) to be allocated.

Often we wrap the allocation inside small inlined “constructor”-like functions.
23Like almost every other garbage collector would do; Ggc can’t behave like that

because it ignores local pointers, but most other GCs handle them!

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 53 / 100

GCC Internals optimization passes

Pass descriptors
Middle-end and back-end passes are described in structures defined in
$GCCSOURCE/gcc/tree-pass.h. They all are opt_pass-es with:

some type, either GIMPLE_PASS, SIMPLE_IPA_PASS, IPA_PASS, or RTL_PASS

some human readable name. If it starts with * no dump can happen.
an optional gate function “hook”, deciding if the pass (and its optional
sub-passes) should run.
an execute function “hook”, doing the actual work of the pass.
required, provided, or destroyed properties of the pass.
“to do” flags
other fields used by the pass manager to organize them.
timing identifier tv_id (for -freport-time program option).

Full IPA passes have more descriptive fields (related to LTO serialization).

Most of file tree-pass.h declare pass descriptors, e.g.:
extern struct gimple_opt_pass pass_early_ipa_sra;
extern struct gimple_opt_pass pass_tail_recursion;
extern struct gimple_opt_pass pass_tail_calls;

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 54 / 100

GCC Internals optimization passes

A pass descriptor [control flow graph building]

In file $GCCSOURCE/gcc/tree-cfg.c

struct gimple_opt_pass pass_build_cfg = { {
GIMPLE_PASS,
"cfg", /* name */
NULL, /* gate */
execute_build_cfg, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_TREE_CFG, /* tv_id */
PROP_gimple_leh, /* properties_required */
PROP_cfg, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_verify_stmts | TODO_cleanup_cfg
| TODO_dump_func /* todo_flags_finish */
} };

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 55 / 100

GCC Internals optimization passes

Another pass descriptor [tail calls processing]

struct gimple_opt_pass pass_tail_calls = { {
GIMPLE_PASS,
"tailc", /* name */
gate_tail_calls, /* gate */
execute_tail_calls, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_NONE, /* tv_id */
PROP_cfg | PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */ } };

This file $GCCSOURCES/gcc/tree-tailcall.c contains two related
passes, for tail recursion elimination.
Notice that the human name (here "tailc") is unfortunately unlike the C
identifier pass_tail_calls (so finding a pass by its name can be boring).

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 56 / 100

GCC Internals optimization passes

IPA pass descriptor: interprocedural constant propagation

struct ipa_opt_pass_d pass_ipa_cp = { { // in file $GCCSOURCE/gcc/ipa-cp.c
IPA_PASS,
"cp", /* name */
cgraph_gate_cp, /* gate */
ipcp_driver, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_IPA_CONSTANT_PROP, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_cgraph | TODO_dump_func |
TODO_remove_functions | TODO_ggc_collect /* todo_flags_finish */
},
ipcp_generate_summary, /* generate_summary routine for LTO*/
ipcp_write_summary, /* write_summary routine for LTO*/
ipcp_read_summary, /* read_summary routine for LTO*/
NULL, /* write_optimization_summary */
NULL, /* read_optimization_summary */
NULL, /* stmt_fixup */
0, /* TODOs */
NULL, /* function_transform */
NULL, /* variable_transform */
};

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 57 / 100

GCC Internals optimization passes

RTL pass descriptor: dead-store elimination

struct rtl_opt_pass pass_rtl_dse1 = { { // in file $GCCSOURCE/gcc/dse.c
RTL_PASS,
"dse1", /* name */
gate_dse1, /* gate */
rest_of_handle_dse, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_DSE1, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func |
TODO_df_finish | TODO_verify_rtl_sharing |
TODO_ggc_collect /* todo_flags_finish */
} };

There is a similar pass_rtl_dse2 in the same file.

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 58 / 100

GCC Internals optimization passes

How the pass manager is activated?

Language specific lang_hooks.parse_file (e.g. c_parse_file in
$GCCSOURCES/gcc/c-parser.c for cc1) is called from compile_file in
$GCCSOURCES/gcc/toplev.c.
When a C function has been entirely parsed by the front-end,
finish_function (from $GCCSOURCE/gcc/c-decl.c) is called. Then

1 c_genericize in $GCCSOURCE/gcc/c-family/c-gimplify.c is called.
The C-specific abstract syntax tree (AST) is transformed in Generic
representations (common to several languages);

2 several functions from $GCCSOURCE/gcc/gimplify.c are called:
gimplify_function_tree→ gimplify_body→ gimplify_stmt
→ gimplify_expr

3 some language-specific gimplification happens thru
lang_hooks.gimplify_expr, e.g. c_gimplify_expr for cc1.

4 etc . . .
Then tree_rest_of_compilation (in file $GCCSOURCE/gcc/tree-optimize.c)
is called.

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 59 / 100

GCC Internals optimization passes

Pass registration

Passes are registered within the pass manager. Plugins indirectly call
register_pass thru the PLUGIN_PASS_MANAGER_SETUP event.

Most Gcc core passes are often statically registered, thru lot of code in
init_optimization_passes like

struct opt_pass **p;
#define NEXT_PASS(PASS) (p = next_pass_1 (p, &((PASS).pass)))
p = &all_lowering_passes;
NEXT_PASS (pass_warn_unused_result);
NEXT_PASS (pass_diagnose_omp_blocks); NEXT_PASS (pass_mudflap_1);
NEXT_PASS (pass_lower_omp); NEXT_PASS (pass_lower_cf);
NEXT_PASS (pass_refactor_eh); NEXT_PASS (pass_lower_eh);
NEXT_PASS (pass_build_cfg); NEXT_PASS (pass_warn_function_return);

// etc ...

next_pass_1 calls make_pass_instance which clones a pass. Passes
may be dynamically duplicated.

Passes are organized in a hierarchical tree of passes. Some passes have
sub-passes (which run only if the super-pass gate function succeeded).

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 60 / 100

GCC Internals optimization passes

Running the pass manager

Function tree_rest_of_compilation calls
execute_all_ipa_transforms and most importantly
execute_pass_list (all_passes) (file $GCCSOURCE/gcc/passes.c)
The role of the pass manager is to run passes using execute_pass_list
thru execute_one_pass.
Some passes have sub-passes⇒ execute_pass_list is recursive.
It has specific variants:
(e.g. execute_ipa_pass_list or execute_all_ipa_transforms, etc...)
Each pass has an execute function, returning a set of to do flags, merged
with the todo_finish flags in the pass.

To Do actions are processed by execute_todo, with code like

if (flags & TODO_ggc_collect)
ggc_collect ();

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 61 / 100

GCC Internals optimization passes

Issues when defining your pass

, The easy parts:
define what your pass should do
specify your gate function, if relevant
specify your exec function
define the properties and to-do flags

/ The difficult items:
position your new pass within the existing passes
⇒ understand after which pass should you add yours!
understand what internal representations are really available
understand what next passes expect!
⇒ understand which passes are running?

I [Basile] also have these difficulties !!

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 62 / 100

GCC Internals optimization passes

pass dump

Usage: pass -fdump-*-* program flags24 to gcc

Each pass can dump information into textual files.
⇒ your new passes should provide dumps.25

⇒ So you could get hundreds of dump files:
hello.c→ hello.c.000i.cgraphhello.c.224t.statistics
(but the numbering don’t means much /, they are not chronological!)

try -fdump-tree-all -fdump-ipa-all -fdump-rtl-all

you can choose your dumps:
-fdump-tree-π to dump the tree or GIMPLE_PASS named π
-fdump-ipa-π to dump the i.p.a. SIMPLE_IPA_PASS or IPA_PASS named π
-fdump-rtl-π to dump the r.t.l. RTL_PASS named π

dump files don’t contain all the information
(and there is no way to parse them) 26.

24Next gcc-4.7 will have improved [before/after] flags
25Unless the pass name starts with *.
26Some Gcc gurus dream of a fully accurate and reparsable textual representation of

Gimple
Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 63 / 100

GCC Internals optimization passes

Dump example: input source example1.c

(using gcc-melt27 svn rev. 174968 ≡ gcc-trunk svn rev. 174941, of june 11th 2011)

1 /∗ example1 . c ∗ /
extern i n t gex (i n t) ;

3

i n t foo (i n t x , i n t y) {
5 i f (x>y)

return gex (x−y) ∗ gex (x+y) ;
7 else

return foo (y , x) ;
9 }

11 void bar (i n t n , i n t ∗ t) {
i n t i ;

13 for (i =0; i <n ; i ++)
t [i] = foo (t [i] , i) + i ;

15 }

27The Melt branch (not the plugin) is dumping into chronologically named files, e.g.
example1.c.%0026.017t.ssa!

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 64 / 100

GCC Internals optimization passes

Dump gimplification example1.c.004t.gimple

bar (int n, int * t) {
long unsigned int D.2698;
long unsigned int D.2699;
int * D.2700;
int D.2701; int D.2702; int D.2703;
int i;
i = 0;
goto <D.1597>;
<D.1596>:
D.2698 = (long unsigned int) i;
D.2699 = D.2698 * 4;
D.2700 = t + D.2699;
D.2698 = (long unsigned int) i;
D.2699 = D.2698 * 4;
D.2700 = t + D.2699;
D.2701 = *D.2700;
D.2702 = foo (D.2701, i);
D.2703 = D.2702 + i;

*D.2700 = D.2703;
i = i + 1;

<D.1597>:
if (i < n) goto <D.1596>;
else goto <D.1598>;
<D.1598>: }

foo (int x, int y) {
int D.2706; int D.2707; int D.2708;
int D.2709; int D.2710;
if (x > y) goto <D.2704>;
else goto <D.2705>;
<D.2704>:
D.2707 = x - y;
D.2708 = gex (D.2707);
D.2709 = x + y;
D.2710 = gex (D.2709);
D.2706 = D.2708 * D.2710;
return D.2706;
<D.2705>:
D.2706 = foo (y, x);
return D.2706; }

functions in reverse order; 3 operands instructions; generated temporaries; generated goto-s

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 65 / 100

GCC Internals optimization passes

Dump SSA - [part of] example1.c.017t.ssa
only the foo function of that dump file, in Static Single Assignment SSA form

;; Function foo
(foo, funcdef_no=0, decl_uid=1589,

cgraph_uid=0)
Symbols to be put in SSA form { .MEM }
Incremental SSA update started at block: 0
Number of blocks in CFG: 6
Number of blocks to update: 5 (83%)

foo (int x, int y) {
int D.2710; int D.2709;
int D.2708; int D.2707; int D.2706;

<bb 2>:
if (x2(D) > y3(D))
goto <bb 3>;

else goto <bb 4>;

<bb 3>:
D.27074 = x2(D) - y3(D);
D.27085 = gex (D.27074);
D.27096 = x2(D) + y3(D);
D.27107 = gex (D.27096);
D.27068 = D.27085 * D.27107;
goto <bb 5>;

<bb 4>:
D.27069 = foo (y3(D), x2(D));

<bb 5>:
D.27061 = Φ <D.27068(3), D.27069(4)>
return D.27061; }

SSA⇔ each variable is assigned once; suffix (D) for default definitions of SSA names
e.g D.27074 [appearing as D.2707_4 in dump files]

Basic blocks: only entered at their start
φ-nodes; “union” of values coming from two edges

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 66 / 100

GCC Internals optimization passes

IPA dump - [tail of] example1.c.049i.inline

;; Function bar (bar, funcdef_no=1,
decl_uid=1593, cgraph_uid=1)

bar (int n, int * t) {
int i;
int D.2703; int D.2702; int D.2701;
int * D.2700;
long unsigned int D.2699;
long unsigned int D.2698;

BLOCK 2 freq:900
PRED: ENTRY [100.0%] (fallthru,exec)
goto <bb 4>;
SUCC: 4 [100.0%] (fallthru,exec)

BLOCK 3 freq:9100
PRED: 4 [91.0%] (true,exec)
D.2698_8 = (long unsigned int) i_1;
D.2699_9 = D.2698_8 * 4; /// 4 ≡ sizeof (int)
D.2700_10 = t_6(D) + D.2699_9;
D.2701_11 = *D.2700_10;
D.2702_12 = foo (D.2701_11, i_1);

D.2703_13 = D.2702_12 + i_1;

*D.2700_10 = D.2703_13;
i_14 = i_1 + 1;
SUCC: 4 [100.0%]

(fallthru,dfs_back,exec)

BLOCK 4 freq:10000
PRED: 2 [100.0%]

(fallthru,exec) 3 [100.0%]
(fallthru,dfs_back,exec)

i_1 = PHI <0(2), i_14(3)>
if (i_1 < n_3(D))
goto <bb 3>;

else goto <bb 5>;
SUCC: 3 [91.0%] (true,exec) 5 [9.0%] (false,exec)

BLOCK 5 freq:900
PRED: 4 [9.0%] (false,exec)
return;
SUCC: EXIT [100.0%]

}

The call to foo has been inlined; edges of CFG have frequencies

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 67 / 100

GCC Internals optimization passes

RTL dump [small part of] example1.c.162r.reginfo

;; Function bar (bar, funcdef_no=1, decl_uid=1593,
cgraph_uid=1)

verify found no changes in insn with uid = 31.
(note 21 0 17 2 [bb 2] NOTE_INSN_BASIC_BLOCK)
(insn 17 21 18 2 (set (reg/v:SI 84 [n])

(reg:SI 5 di [n]))
example1.c:11 64 {*movsi_internal}

(expr_list:REG_DEAD (reg:SI 5 di [n])
(nil)))

(insn 18 17 19 2 (set (reg/v/f:DI 85 [t])
(reg:DI 4 si [t]))
example1.c:11 62 {*movdi_internal_rex64}

(expr_list:REG_DEAD (reg:DI 4 si [t])
(nil)))

(note 19 18 23 2 NOTE_INSN_FUNCTION_BEG)
(insn 23 19 24 2 (set (reg:CCNO 17 flags)

(compare:CCNO (reg/v:SI 84 [n])
(const_int 0 [0])))
example1.c:13 2 {*cmpsi_ccno_1}

(nil))
(jump_insn 24 23 25 2 (set (pc)

(if_then_else (le (reg:CCNO 17 flags)
(const_int 0 [0]))

(label_ref:DI 42)
(pc))) example1.c:13 594 *jcc_1

(expr_list:REG_DEAD (reg:CCNO 17 flags)
(expr_list:REG_BR_PROB (const_int 900 [0x384])

(nil)))
-> 42)
(note 25 24 26 3 [bb 3] NOTE_INSN_BASIC_BLOCK)
(insn 26 25 20 3 (set (reg:DI 82 [ivtmp.14])

(reg/v/f:DI 85 [t])) 62 {*movdi_internal_rex64}
(expr_list:REG_DEAD (reg/v/f:DI 85 [t])

(nil)))
(insn 20 26 37 3 (set (reg/v:SI 78 [i])

(const_int 0 [0])) example1.c:13 64
{*movsi_internal}

(nil))
(code_label 37 20 27 4 9 "" [1 uses])
(note 27 37 29 4 [bb 4] NOTE_INSN_BASIC_BLOCK)
(insn 29 27 30 4 (set (reg:SI 4 si)

(reg/v:SI 78 [i])) example1.c:14 64 {*movsi_internal}
(nil))

(insn 30 29 31 4 (set (reg:SI 5 di)
(mem:SI (reg:DI 82 [ivtmp.14])

[2 MEM[base: D.2731_28, offset: 0B]+0 S4 A32]))
example1.c:14 64 {*movsi_internal}

(nil))
/// etc...

I [Basile] can’t explain it /; but notice x86 specific code

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 68 / 100

GCC Internals optimization passes

generated assembly [part of] example1.s

.file "example1.c"

options enabled: -fasynchronous-unwind-tables
-fauto-inc-dec
etc etc etc . . .
-fverbose-asm -fzee -fzero-initialized-in-bss
-m128bit-long-double -m64 -m80387
-maccumulate-outgoing-args -malign-stringops
-mfancy-math-387 mfp-ret-in-387 -mglibc
-mieee-fp -mmmx -mno-sse4 -mpush-args
-mred-zone msse -msse2 -mtls-direct-seg-refs

.globl bar

.type bar, @function
bar:
.LFB1:

.cfi_startproc
pushq %r12 #
.cfi_def_cfa_offset 16
.cfi_offset 12, -16
testl %edi, %edi # n
movl %edi, %r12d # n, n
pushq %rbp #
.cfi_def_cfa_offset 24
.cfi_offset 6, -24
pushq %rbx #
.cfi_def_cfa_offset 32
.cfi_offset 3, -32

jle .L7 #,
movq %rsi, %rbp # t, ivtmp.14
xorl %ebx, %ebx # i
.p2align 4,,10
.p2align 3

.L9:
movl 0(%rbp), %edi # MEM[base: D.2731_28, offset: 0B],
movl %ebx, %esi # i,
call foo #
addl %ebx, %eax # i, tmp86
addl $1, %ebx #, i
movl %eax, 0(%rbp) # tmp86, MEM[base: D.2731_28, offset: 0B]
addq $4, %rbp #, ivtmp.14
cmpl %r12d, %ebx # n, i
jne .L9 #,

.L7:
popq %rbx #
.cfi_def_cfa_offset 24
popq %rbp #
.cfi_def_cfa_offset 16
popq %r12 #
.cfi_def_cfa_offset 8
ret .cfi_endproc

.LFE1:
.size bar, .-bar
.ident "GCC: (GNU) 4.7.0 20110611 (experimental)

[trunk revision 174943]"
.section .note.GNU-stack,"",@progbits

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 69 / 100

GCC Internals optimization passes

Order of executed passes; running gimple passes

When cc1 don’t get the -quiet program argument, names of executed
IPA passes are printed.
Plugins know about executed passes thru PLUGIN_PASS_EXECUTION
events.
global variable current_pass

understanding all the executed passes is not very simple

Simple GIMPLE_PASS-es are executed one (compiled) function at a time.
global cfun points to the current function as a struct function from
$GCCSOURCE/gcc/function.h

global current_function_decl is a tree

cfun is NULL for non-gimple passes (i.e. IPA_PASS-es)

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 70 / 100

GCC Internals optimization passes

running inter-procedural passes

They obviously work on the whole compilation unit, so run “once”28.

Using the cgraph_nodes global from $GCCSOURCE/gcc/cgraph.h, they often do

struct cgraph_node *node;
for (node = cgraph_nodes; node; node = node->next) {

if (!gimple_has_body_p (node->decl)
|| node->clone_of)

continue;
// do something useful with node
}

If node->decl is a FUNCTION_DECL tree, we can retrieve its body (a sequence
of Gimple-s) using gimple_body (from $GCCSOURCE/gcc/gimple.h).
However, often that body is not available, because only the control flow graph
exist at that point. We can use DECL_STRUCT_FUNCTION to retrieve a
struct function, then ENTRY_BLOCK_PTR_FOR_FUNCTION to get a
basic_block, etc...

28But the pass manager could run again such a pass.
Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 71 / 100

GCC Internals plugins

Plugins

I [Basile] think that: plugins are a very important feature of Gcc , but
most Gcc developers don’t care
some Gcc hackers are against them
Gcc has no stable API [yet?], no binary compatibility
Gcc internals are under-documented
plugins are dependent upon the version of Gcc
FSF was hard to convince (plugins required changes in licensing)
attracting outside developers to make plugins is hard

please code Gcc plugins or extensions (using Melt)

There are still [too] few plugins:
TreeHydra (Mozilla), DragonEgg (LLVM), Milepost/Ctuning??, MELT, etc . . .
plugins should be GPL compatible free software
(GCC licence probably forbids to use proprietary Gcc plugins).
some distributed Gcc compilers have disabled plugins /
plugins might not work
(e.g. a plugin started from lto1 can’t do front-end things like registering pragmas)

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 72 / 100

GCC Internals plugins

Why code [plugins in C or] Gcc extensions [in MELT]

IMHO:
Don’t code plugins for features which should go in core Gcc

You can’t do everything thru plugins, e.g. a new front-end for a new
language.

Gcc extensions (plugins in C, or extensions in MELT) are useful for:
research and prototyping (of new compilation techniques)

specific processing of source code (which don’t have its place inside Gcc core):
coding rules validation (e.g. Misra-C, Embedded C++, DOI178?, . . .), including
library or software specific rules
(e.g. every pthread_mutex_lock should have its matching pthread_mutex_unlock in
the same function or block)
improved type checking
(e.g. typing of variadic functions like g_object_set in Gtk)
specific optimizations - (e.g. fprintf(stdout,...) → printf(...))

Such specific processing don’t have its place inside Gcc itself, because it
is tied to a particular { domain, corporation, community, software ... }

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 73 / 100

GCC Internals plugins

dreams of Gcc extensions [in MELT]

You could dare coding these as Gcc plugins in plain C, but even as Melt
extensions it is not easy!

Hyper-optimization extensions i.e. -O∞ optimization level ,
Gcc guidelines require that passes execute in linear time; but some clever optimizations are
provided by cubic or exponential algorithms; some particular users could afford them.

Clever warnings and static analysis
a free competitor to CoverityTM

idea explored in a Google Summer of Code 2011 project by Pierre Vittet,
e.g. https://github.com/Piervit/GMWarn
application specific analysis
Alexandre Lissy, Model Checking the Linux Kernel

tools support for large free software (Kde?, Gnome?, . . .)

Free Software wants29 you to code Gcc extensions!

29Or is it just me ,?

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 74 / 100

https://github.com/Piervit/GMWarn

GCC Internals plugins

Running plugins

Users can run plugins with program options to gcc like
-fplugin=/path/to/name.so
-fplugin-arg-name-key[=value]

With a short option -fplugin=name plugins are loaded from a
predefined plugin directory30 as
-fplugin=‘gcc -print-file-name=plugin‘/name.so

Several plugins can be loaded in sequence.

Gcc accept plugins only on ELF systems (e.g. Gnu/Linux) with dlopen,
provided plugins have been enabled at configuration time.

the plugin is dlopen-ed by cc1 or cc1plus or even lto1

(caveat: front-end functions are not in lto1)

30This could be enhanced in next gcc-4.7 with language-specific subdirectories.

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 75 / 100

GCC Internals plugins

Plugin as used from Gcc core

Details on gcc.gnu.org/onlinedocs/gccint/Plugins.html; see also file
$GCCSOURCE/gcc/gcc-plugin.h (which gets installed under the plugin directory)

cc1 (or lto1, ...) is initializing plugins quite early (before parsing the compilation
unit or running passes). It checks that plugin_is_GPL_compatible then run
the plugin’s plugin_init function (which gets version info, and arguments, etc...)

Inside Gcc, plugins are invoked from several places, e.g.
execute_one_pass calls

invoke_plugin_callbacks (PLUGIN_PASS_EXECUTION, pass);

The PLUGIN_PASS_EXECUTION is a plugin event. Here, the pass is the
event-specific gcc data (for many events, it is NULL). There are ≈ 20 events (and
more could be dynamically added, e.g. for one plugin to hook other plugins.).

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 76 / 100

file:gcc.gnu.org/onlinedocs/gccint/Plugins.html

GCC Internals plugins

Event registration from plugins

Plugins should register the events they are interested in, usually from their
plugin_init function, with a callback of type

/* The prototype for a plugin callback function.
gcc_data - event-specific data provided by GCC
user_data - plugin-specific data provided by the plug-in. */
typedef void (*plugin_callback_func)

(void *gcc_data, void *user_data);

Plugins register their callback function callback of above type
plugin_callback_func using register_callback (from file
$GCCSOURCE/gcc/gcc-plugin.h), e.g. from melt-runtime.c

register_callback (/*name:*/ melt_plugin_name,
/*event:*/ PLUGIN_PASS_EXECUTION,
/*callback:*/ melt_passexec_callback,
/*no user_data:*/ NULL);

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 77 / 100

GCC Internals plugins

Adding or replacing passes in a plugin

(you should know where to add your new pass!)

Use register_callback with a struct register_pass_info data but
no callback, e.g. to register yourpass after the pass named "cfg":

struct register_pass_info passinfo;
memset (&passinfo, 0, sizeof (passinfo));
passinfo.pass = (struct opt_pass*) yourpass;
passinfo.reference_pass_name = "cfg";
passinfo.ref_pass_instance_number = -1;
passinfo.pos_op = PASS_POS_INSERT_AFTER;
register_callback (plugin_info->base_name, PLUGIN_PASS_MANAGER_SETUP,

/*no callback routine*/ NULL,
&passinfo);

The pos_op could also be PASS_POS_INSERT_BEFORE or PASS_POS_REPLACE.

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 78 / 100

GCC Internals plugins

Main plugin events

A non-exhaustive list (extracted from $GCCSOURCE/gcc/plugin.def), with the role
of the optional gcc data:

1 PLUGIN_START (called from toplev.c) called before compile_file

2 PLUGIN_FINISH_TYPE, called from c-parser.c with the new type tree

3 PLUGIN_PRE_GENERICIZE (from c-parser.c) to see the low level AST in C or
C++ front-end, with the new function tree

4 PLUGIN_GGC_START or PLUGIN_GGC_END called by Ggc

5 PLUGIN_ATTRIBUTES (from attribs.c) or PLUGIN_PRAGMAS (from
c-family/c-pragma.c) to register additional attributes or pragmas from front-end.

6 PLUGIN_FINISH_UNIT (called from toplev.c) can be used for LTO summaries
7 PLUGIN_FINISH (called from toplev.c) to signal the end of compilation
8 PLUGIN_ALL_PASSES_{START,END}, PLUGIN_ALL_IPA_PASSES_{START,

END}, PLUGIN_EARLY_GIMPLE_PASSES_{START,END} are related to passes
9 PLUGIN_PASS_EXECUTION identify the given pass, and

PLUGIN_OVERRIDE_GATE (with &gate_status) may override gate decisions

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 79 / 100

MELT language and implementation

Contents
1 introduction

disclaimer
why extend a compiler?
about GCC
extending GCC thru plugins
extending GCC with DSLs

2 MELT language and implementation
motivations and major features
MELT values and GCC stuff
some constructs related to C code generation
building and running MELT

3 GCC Internals
memory management inside GCC
optimization passes
plugins

4 MELT language and implementation
MELT values and GCC stuff
some constructs related to C code generation

5 pattern matching in MELT
pattern matching example
matching and patterns
matchers
translating pattern matching
MELT language syntax

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 80 / 100

MELT language and implementation MELT values and GCC stuff

MELT values and GCC stuff

Melt deals with two kinds of things:
1 Melt first-class (dynamically typed) values

objects, tuples, lists, closures, boxed strings, boxed gimples, boxed trees, homogenous
hash-tables. . .

2 existing Gcc stuff (statically and explicitly typed)
raw long-s, tree-s, gimple-s as already known by Gcc . . .

Essential distinction (mandated by lack of polymorphism of Ggc):

Things = Values ∪ Stuff

Melt code explicitly annotates stuff with c-types like :long, :tree . . . (and
:value for values, when needed).
handling Melt values is preferred (and easier) in Melt code.
Melt argument passing is typed

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 81 / 100

MELT language and implementation MELT values and GCC stuff

Melt copying garbage collection for values

copying Melt GC well suited for fast allocation31 and many temporary
(quickly dying) values
live young values copied into Ggc heap (but needs write barrier)
Melt GC requires normalization z := φ(ψ(x), y)→ τ := ψ(x); z := φ(τ, y)
Melt GC handles locals and may trigger Ggc at any time
well suited for generated C code
hand-written code for Melt value is cumbersome
old generation of values is the Ggc heap→ built-in compatibility of Melt
GC with Ggc

Melt call frames are known to both Melt GC & Ggc
call frames are singly-linked struct-ures.

31Melt values are allocated in a birth region by a pointer increment; when the birth
region is full, live values are copied out, into Ggc heap, then the birth region is
de-allocated.

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 82 / 100

MELT language and implementation MELT values and GCC stuff

Melt value taxonomy

discr

gimple

boxed gimple

3-tuple

discr

value 1

value 2

value 3

3 (length)

class

field 1

field 2

field 3

3
(#fields)

30017
(magic)

object

discr hd tl discr hd tl

pair pair

discr hd

pair

discr first lastlist

GCC MELT values

 hash 0x57de2f

values boxing some stuff
objects (single-inheritance; classes
are also objects)

tuples, lists and pairs
closures and routines
homogenous hash-tables (e.g.
all keys are tree stuff, associated to
a non-null value)

etc . . .

Each value has a discriminant
(which for an object is its class).

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 83 / 100

MELT language and implementation some constructs related to C code generation

primitives and macro-strings

Definition of (stuff) addition:

(defprimitive +i (:long a b) :long
#{($A) + ($B)}#)

Macro-strings #{...}# mix C code with Melt symbols $A, used as “templates”

Primitives have a typed result and arguments.

Since locals are initially cleared, many Gcc related primitives test for null (e.g.
tree or gimple) pointers, e.g.

(defprimitive gimple_seq_first_stmt (:gimple_seq gs) :gimple
#{(($GS)?gimple_seq_first_stmt(($GS)):NULL)}#)

:void primitives translate to C statement blocks; other primitives are
translated to C expressions

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 84 / 100

MELT language and implementation some constructs related to C code generation

“hello world” in Melt with a code chunk

(code_chunk hello ;;state symbol
#{int $HELLO#_cnt =0;
$HELLO#_lab:printf("hello world %d\n",$HELLO#_cnt++);
if ($HELLO#_cnt <2) goto $HELLO#_lab;}#)

The “state symbol” is expanded to a unique C identifier (e.g. HELLO_1 the first time,
HELLO_2 the second one, etc...), e.g. generates in C

int HELLO_1_cnt =0;
HELLO_1_lab:printf("hello world %d\n", HELLO_1_cnt++);
if (HELLO_1_cnt <2) goto HELLO_1__lab;

State symbols are really useful to generate unique identifiers in nested
constructions like iterations.

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 85 / 100

MELT language and implementation some constructs related to C code generation

c-iterators to generate iterative statements
Using an c-iterator
;; apply a function f to each boxed gimple in a gimple seq gseq
(defun do_each_gimpleseq (f :gimple_seq gseq)
(each_in_gimpleseq
(gseq) ;; the input of the iteration
(:gimple g) ;; the local formals
(let ((gplval (make_gimple discr_gimple g)))
(f gplval))))

Defining the c-iterator
(defciterator each_in_gimpleseq

(:gimple_seq gseq) ;start formals
eachgimplseq ;state symbol
(:gimple g) ;local formals
;;; before expansion
#{/*$EACHGIMPLSEQ*/ gimple_stmt_iterator gsi_$EACHGIMPLSEQ;
if ($GSEQ) for (gsi_$EACHGIMPLSEQ = gsi_start ($GSEQ);

!gsi_end_p (gsi_$EACHGIMPLSEQ);
gsi_next (&gsi_$EACHGIMPLSEQ)) {

$G = gsi_stmt (gsi_$EACHGIMPLSEQ); }#
;;; after expansion
#{ } }#)

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 86 / 100

pattern matching in MELT

Contents
1 introduction

disclaimer
why extend a compiler?
about GCC
extending GCC thru plugins
extending GCC with DSLs

2 MELT language and implementation
motivations and major features
MELT values and GCC stuff
some constructs related to C code generation
building and running MELT

3 GCC Internals
memory management inside GCC
optimization passes
plugins

4 MELT language and implementation
MELT values and GCC stuff
some constructs related to C code generation

5 pattern matching in MELT
pattern matching example
matching and patterns
matchers
translating pattern matching
MELT language syntax

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 87 / 100

pattern matching in MELT pattern matching example

Pattern matching example: Talpo by Pierre Vittet

;;detect a gimple cond with the null pointer
;;the cond can be of type == or !=
;;returns the lhs part of the cond (or boxed null tree if no match)
(defun test_detect_cond_with_null (useless :gimple g)

(match g
(?(gimple_cond_notequal ?lhs

?(tree_integer_cst 0))
(return (make_tree discr_tree lhs))

)
(?(gimple_cond_equal ?lhs

?(tree_integer_cst 0))
(return (make_tree discr_tree lhs))

)
(
?_

(return (make_tree discr_tree (null_tree))))))

Patterns start with ?, so ?_ is the wildcard (joker). ?lhs is a pattern variable.

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 88 / 100

pattern matching in MELT matching and patterns

What match does?

syntax is (match ε κ1 . . . κn) with ε an expression giving µ and κj are
matching clauses considered in sequence
the match expression returns a result (some thing, perhaps :void)
it is made of matching clauses (πi εi,1 . . . εi,ni ηi), each starting with a
pattern32 πi followed by sub-expressions εi,j ending with ηi

it matches (or filters) some thing µ
pattern variables are local to their clause, and initially cleared
when pattern πi matches µ the expressions εi,j of clause i are executed in
sequence, with the pattern variables inside πi locally bound. The last
sub-expression ηi of the match clause gives the result of the entire match
(and all ηi should have a common c-type, or else :void)
if no clause matches -this is bad taste, usually last clause has the ?_
joker pattern-, the result is cleared
a pattern πi can match the thing µ or fail

32expressions, e.g. constant litterals, are degenerate patterns!
Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 89 / 100

pattern matching in MELT matching and patterns

pattern matching rules

rules for matching of pattern π against thing µ:
the joker pattern ?_ always match
an expression (e.g. a constant) ε (giving µ′) matches µ iff (µ′ == µ) in C
parlance
a pattern variable like ?x matches if

x was unbound; then it is bound (locally to the clause) to µ
or else x was already bound to some µ′ and (µ′ == µ) [non-linear patterns]
otherwise (x was bound to a different thing), the pattern variable ?x match fails

a matcher pattern ?(m η1 . . . ηn π′
1 . . . π

′
p) with n ≥ 0 input argument

sub-expressions ηi and p ≥ 0 sub-patterns π′j
the matcher m does a test using results ρi of ηi ;
if the test succeeds, data are extracted in the fill step and each should
match its π′j
otherwise (the test fails, so) the match fails

an instance pattern ?(instance κ :φ1 π′
1 ... :φn π′

n)
matches iff µ is an object of class κ (or a sub-class) with each field φi
matching its sub-pattern π′

i

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 90 / 100

pattern matching in MELT matching and patterns

control patterns

We have controlling patterns
conjonctive pattern ?(and π1 . . . πn) matches µ iff π1 matches µ and
then π2 matches µ . . .
disjonctive pattern?(or π1 . . . πn) matches µ iff π1 matches µ or else
π2 matches µ . . .

Pattern variables are initially cleared, so (match 1 (?(or ?x ?y) y))
gives 0 (as a :long stuff)

(other control patterns would be nice, e.g. backtracking patterns)

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 91 / 100

pattern matching in MELT matchers

matchers

Two kinds of matchers:
1 c-matchers giving the test and the fill code thru expanded macro-strings

(defcmatcher gimple_cond_equal
(:gimple gc) ;; matched thing µ
(:tree lhs :tree rhs) ;; subpatterns putput
gce ;; state symbol
;; test expansion:
#{($GC &&

gimple_code ($GC) == GIMPLE_COND &&
gimple_cond_code ($GC) == EQ_EXPR)

}#
;; fill expansion:
#{ $LHS = gimple_cond_lhs ($GC);

$RHS = gimple_cond_rhs ($GC);
}#)

2 fun-matchers give test and fill steps thru a Melt function returning
secondary results

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 92 / 100

pattern matching in MELT translating pattern matching

translating pattern matching

mdata_3_SYMB

:value

MATCH_STEP_TEST_INSTANCE__1
CLASS_SYMBOL

MATCH_STEP_TEST_INSTANCE__2
CLASS_CONTAINER

mdata_5_CONTAINER_VALUE__1

:value

MATCH_STEP_FLAG_SET__3

flag#5 CVAL

MATCH_STEP_TEST_MATCHER__4
INTEGERBOX_OF

mdata_6_ICT__1

:long

mdata_7_NAMED_NAME__1

:value

MATCH_STEP_FLAG_SET__9

flag#2 SYNAM

MATCH_STEP_FLAG_CONJUNCTION__10

flag#1 CLASS_SYMBOL

flags{ 2 }

MATCH_STEP_SUCCESS_WHEN_FLAG__11

flag#1 CLASS_SYMBOL

Then

MATCH_STEP_FLAG_CONJUNCTION__6

flag#4 and

flags { 5, 6 }

MATCH_STEP_FLAG_CONJUNCTION__7

flag#3 CLASS_CONTAINER

flags{ 4 }

Then

MATCH_STEP_SUCCESS_WHEN_FLAG__8

flag#3 CLASS_CONTAINER

Then

Then

MATCH_STEP_FLAG_SET__5

flag#6 INTEGERBOX_OF

Then

Then

NAMED_NAME

Then

Else

CONTAINER_VALUE

Then

ICT Then

Naive approach might be not very
efficient: tests are done more than
needed.
translate

(match v
(?(instance class_symbol

:named_name ?synam)
(f synam))

(?(instance class_container
:container_value

?(and ?cval
?(integerbox_of ?_)))

(g cval)))

into a graph of matching steps, with
tests. Share steps when possible.

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 93 / 100

pattern matching in MELT MELT language syntax

main Melt syntactic constructs

expressions where n ≥ 0 and p ≥ 0
application (φ α1 ... αn) apply function (or primitive) φ to argu-

ments αi
assignment (setq ν ε) set local variable ν to ε
message send (σ ρ α1 ... αn) send selector σ to reciever ρ with argu-

ments αi
let expression (let (β1...βn) ε1...εp ε′) with local sequential33 bindings βi

evaluate side-effecting sub-expressions
εj and give result of ε′

sequence (progn ε1...εn ε′) evaluate εi (for their side effects) and at
last ε′, giving its result (like operator , in
C)

abstraction34 (lambda φ ε1...εn ε′) anonymous function with formals φ and
side-effecting expressions εi , return re-
sult of ε′

pattern matching (match ε χ1 ... χn) match result of ε against match clauses
χi , giving result of last expression of
matched clause.

33So the let of Melt is like the let* of Scheme!
34abstractions are constructive expressions and may appear in letrec bindings

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 94 / 100

pattern matching in MELT MELT language syntax

A cleared thing35 (represented by all zero bits) is nil, or the long 0 stuff, or the
null gimple or tree . . . stuff. It is false.

conditional expressions where n ≥ 0 and p ≥ 0
test (if τ θ ε) if τ then θ else ε (like ?: in C)
conditional (cond κ1 ... κn) evaluate conditions κi until one is satisfied
conjonction (and κ1 ... κn κ′) if κ1 and then κ2 . . . and then κn is “true” (non

nil or non zero) then κ′ else the cleared thing of
same type

disjunction (or δ1 ... δn) the first of the δi which is “true” (non nil, or zero,
...)

In a cond conditional expression, every condition κi -except perhaps the last- is like (γi εi,1 ...
εi,pi ε′) with pi ≥ 0. The first such condition for which γi is “true” gets its sub-expressions εi,j
evaluated sequentially for their side-effects and gives its ε′. The last condition can be (:else ε1
... εn ε′), is triggered if all previous conditions failed, and (with the sub-expressions εi
evaluated sequentially for their side-effects) gives its ε′

35Every local thing (value, stuff . . .) is cleared at start of its containing Melt function.
Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 95 / 100

pattern matching in MELT MELT language syntax

more expressions
loop (forever λ α1 ... αn) loop indefinitely on the αi which

may exit
exit (exit λ ε1 ... εn ε′) exit enclosing loop λ after side-

effects of εi and result of ε′

return (return ε ε1 ... εn) return ε as the main result, and the
εi as secondary results

multiple call (multicall φ κ ε1...εn ε′) locally bind formals φ to main and
secondary result[s] of application or
send κ and evaluate the εi for side-
effects and ε′ for result

recursive let (letrec (β1...βn) ε1...εp) with co-recursive constructive bind-
ings βi evaluate sub-expressions εj

field access (get_field :Φ ε) if ε gives an appropriate object36 re-
trieves its field Φ, otherwise nil

unsafe field access (unsafe_get_field :Φ ε) unsafe37 access without check like
above

object update (put_fields ε :Φ1 ε1 ...
:Φn εn)

safely update 38 (if appropriate) in
object given by ε each field Φi by
value of εi

36i.e. if the value ω of ε is an object which is a direct or indirect instance of the class
defining field Φ.

37Only for Melt gurus, since it may crash!
38i.e. update object ω only if the value ω of ε is an object which is a direct or indirect

instance of the class defining each field Φi
Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 96 / 100

pattern matching in MELT MELT language syntax

constructive expressions
list (list α1 ... αn) make a list of n values αi

tuple (tuple α1 ... αn) make a tuple of n values αi

instance (instance κ :Φ1 ε1 ... :Φn εn) make an instance of class κ
and n fields Φi set to value εi

Abstractions (lambda expressions) are also constructive.

Constructive expressions may be recursively bound in letrec:
(letrec (

(a (list b c))
(b (tuple a b))
(c (lambda (x y) (if (== x a) b y)))
(d (instance class_container :container_value a))

)
(c d bar))

Note: contrarily to Scheme, Melt has no tail recursive calls.
Every [recursive] Melt call grows the stack (because it is translated to a C call).

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ? 97 / 100

pattern matching in MELT MELT language syntax

expressions about names
expressions defining names

for functions (defun ν φ ε1 ... εn ε′) define function ν with formal arguments φ and
body ε1 ... εn ε

′

for primitives (defprimitive ν φ :θ η) define primitive ν with formal arguments phi ,
result c-type θ by macro-string expansion η

for c-iterators (defciterator ν Φ σ Ψ η
η′)

define c-iterator ν with input formals Φ, state
symbol σ, local formals Ψ, start expansion η,
end expansion η′

for c-matchers (defcmatcher ν Φ Ψ σ η

η′)
define c-matcher ν with input formals Φ [the
matched thing, then other inputs], output formals
Ψ, state symbol σ, test expansion η, fill expan-
sion η′

for fun-matchers (defunmatcher ν Φ Ψ ε) define funmatcher ν with input formals Φ, out-
put formals Ψ, with function ε

expressions exporting names
of values (export_value ν1 ...) export the names νi as bindings of value

(e.g. of functions, objects, matcher)
of macros (export_macro ν ε) export name ν as a binding of a macro (ex-

panded by the ε function)
of classes (export_class ν1 ...) export every class name ν and all their

fields (as value bindings)
as synonym (export_synonym ν ν′) export the new name ν as a synonym of

the existing name ν′

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ♠ 98 / 100

pattern matching in MELT MELT language syntax

miscellanous expressions

For all:
expressions for debugging

debug message (debug ε ...) debug printing message
assert check (assert_msg µ τ) nice “halt” showing message µ when as-

serted test τ is false
warning (compile_warning µ ε) like #warning in Gcc C: emit warning µ

at Melt translation time and gives ε
meta-conditionals

Cpp test (cppif σ ε ε′) conditional on a preprocessor symbol:
emitted C code is #if σ code for ε #else

code for ε′ #endif

Version test (gccif β ε1 ...) the εi are translated only if the Gcc trans-
lating them has version prefix string β

introspective expressions
Parent environment (parent_module_environment) gives the previous

module environment
Current environment (current_module_environment_container) gives the container of

the current module’s
environment

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ♠ 99 / 100

pattern matching in MELT MELT language syntax

variadic functions

:rest as last formal argument (like ... in C)
(variadic variadic-cases) construct to consume variadic arguments:

(defun varidbg (x y :rest)
(forever argloop

(variadic
(() ;; no more variadic argument

(return))
((:value v) ;; consume a value

(debug "varidbg v=" v))
((:tree t) ;; consume a raw tree

(debug "varidbg t=" t))
(:else ;; unexpected kind

(assert_msg "varidbg bad variadic")))))

Basile STARYNKEVITCH MELT = a DSL to extend GCC December 9th 2011 (INRIA/Grenoble) ♠ 100 / 100

	introduction
	disclaimer
	why extend a compiler?
	about GCC
	extending GCC thru plugins
	extending GCC with DSLs

	MELT language and implementation
	motivations and major features
	MELT values and GCC stuff
	some constructs related to C code generation
	building and running MELT

	GCC Internals
	memory management inside GCC
	optimization passes
	plugins

	MELT language and implementation
	MELT values and GCC stuff
	some constructs related to C code generation

	pattern matching in MELT
	pattern matching example
	matching and patterns
	matchers
	translating pattern matching
	MELT language syntax

