
Bismon
a static source
code analysis

framework using
some symbolic

artificial
intelligence
techniques.

B.Starynkevitch

Introduction

Data and
persistence

Metaprogram-
ming
approach

future, questions
& related project

Bismon
a static source code analysis framework using

some symbolic artificial intelligence
techniques.

Basile Starynkevitch - starynkevitch.net/Basile
basile.starynkevitch@cea.fr and basile@starynkevitch.net

CEA/LIST (DILS) - laboratoire de Sûreté des Logiciels -

November 21st, 2019

Opinions are only mines (not from CEA or E.C.)

git ac3458f6d48bcd7f

1 / 20

http://starynkevitch.net/Basile/
mailto:basile.starynkevitch@cea.fr
mailto:basile@starynkevitch.net


Bismon
a static source
code analysis

framework using
some symbolic

artificial
intelligence
techniques.

B.Starynkevitch

Introduction

Data and
persistence

Metaprogram-
ming
approach

future, questions
& related project

Introduction
funding

Bismon is funded by two Horizon 2020 research and innnovation
actions:

Chariot, under Grant Agreement 780075.
Decoder, under Grant Agreement 824231.

So Bismon is European.

(100% funded by the European Commission)
.

Opinions are only mines (not from CEA or E.C.)

Work in progress !

2 / 20

https://github.com/bstarynk/bismon
https://ec.europa.eu/programmes/horizon2020/en
https://www.chariotproject.eu/
http://decoder-project.eu/
https://github.com/bstarynk/bismon


Bismon
a static source
code analysis

framework using
some symbolic

artificial
intelligence
techniques.

B.Starynkevitch

Introduction

Data and
persistence

Metaprogram-
ming
approach

future, questions
& related project

Introduction
AI and other inspirations

D.Lenat work on Rll -1 then Eurisko
J.Pitrat† (1934 - october 2019) pionneering work on Caia
my PhD work (1985 - 1990)

my past Gcc Melt work (2008 - 2016)

Frama-C, its Acsl, Ocaml runtime, and non-relational
databases
Gcc > 10MLOC of C++ (bootstrapped with g++ -O2 -flto) and a
dozen of DSLs

For references, see the Bismon draft report on my home page

Some GPLv3+ code for Linux/x86-64 desktop is available
github.com/bstarynk/bismon

These slides are under (CC-BY-SA-4) and available from
starynkevitch.net/Basile/Bismon-Starynkevitch-Lamsade-21nov2019.pdf

3 / 20

http://bootstrappingartificialintelligence.fr/WordPress3/
http://starynkevitch.net/Basile/caia-su-24feb2016.tar.bz2
http://starynkevitch.net/Basile/gcc-melt/
http://frama-c.com/
https://frama-c.com/acsl_tutorial_index.html
http://ocaml.org
http://gcc.gnu.org/
https://en.wikipedia.org/wiki/Domain-specific_language
http://starynkevitch.net/Basile/bismon-chariot-doc.pdf
https://github.com/bstarynk/bismon
http://starynkevitch.net/Basile/
https://www.gnu.org/licenses/gpl-3.0.en.html
http://github.com/bstarynk/bismon
https://creativecommons.org/licenses/by-sa/4.0/
http://starynkevitch.net/Basile/Bismon-Starynkevitch-Lamsade-21nov2019.pdf


Bismon
a static source
code analysis

framework using
some symbolic

artificial
intelligence
techniques.

B.Starynkevitch

Introduction

Data and
persistence

Metaprogram-
ming
approach

future, questions
& related project

Introduction
motivations

Help small teams of mostly junior software developers (e.g. IoT)
using Linux thru a collaborative Web assistant tool

bismon
persistent
monitor

builderbrowser

IoT 
source code

Bill

generated C++
GCC plugin

yoursite.com

static
analysis
expert

builderbrowser

IoT 
source code

Alice

using metaprogramming techniques

4 / 20



Bismon
a static source
code analysis

framework using
some symbolic

artificial
intelligence
techniques.

B.Starynkevitch

Introduction

Data and
persistence

Metaprogram-
ming
approach

future, questions
& related project

Data and persistence
the Bismon heap greatly simplified (my figure borrowed from refpersys.org)

global
roots

transient
roots

vt1

vt2

vt3

vt4

vt5

#15

#-17

#123#123

vec 1.0 3.0

working
threads

thread 1

thread 2

cfr1

cfr2

cfr3

lv1
lv2

lv3

lv4

Bismon heap

ob1

ob2
iv1

iv2

iv3

tob1

ob3

str1 "abc"

iv4

5 / 20

http://refpersys.org/


Bismon
a static source
code analysis

framework using
some symbolic

artificial
intelligence
techniques.

B.Starynkevitch

Introduction

Data and
persistence

Metaprogram-
ming
approach

future, questions
& related project

Data and persistence
garbage-collected values in Bismon

immutable values (often with flexible array members in C code) :
scalar values: tagged 63 bits integers, boxed strings, boxed
doubles (not NaN, since it is uncomparable) …
composite values :

ordered sets of objects with O(log n) membership test
sequential tuples of objects (same layout in memory as sets)
nodes with an object connective and zero or more son values.
closures with their code represented by an object, and zero or
more closed values (same data layout as nodes)

mutable and lockable so “heavy” objects (each having its unique
objid e.g. _5t7pTgRckFK_7hOY5yvx8v3)

The nil pointer denotes a lack of value. Every value has its class (an
object).

In addition, our GC manages quasi-values as an implementation
detail. A quasi-value is simply a GC-ed memory zone which could
belong to some value or object.

6 / 20

https://github.com/bstarynk/bismon
https://en.wikipedia.org/wiki/Flexible_array_member


Bismon
a static source
code analysis

framework using
some symbolic

artificial
intelligence
techniques.

B.Starynkevitch

Introduction

Data and
persistence

Metaprogram-
ming
approach

future, questions
& related project

Data and persistence
garbage collection in Bismon (1/3)

Garbage collection is:

well understood in theory but difficult in practice
dealing with whole-program properties of running processes
related to virtual memory and virtual address space
crucially important for performance :

can be very efficient, at least with single-threaded mostly
immutable values (see Ocaml, Haskell, Sbcl or some Jvm
implementations)
very brittle (a GC bug usually crashes your program)

practically very dependent of both hardware (CPU cache) and
operating system.
still an art of delicate trade-offs (finalizers, decaying or weak
pointers, tuning parameters, size of generations, frequency of major GCs, ...)

7 / 20

https://github.com/bstarynk/bismon
http://gchandbook.org/
http://sbcl.org/


Bismon
a static source
code analysis

framework using
some symbolic

artificial
intelligence
techniques.

B.Starynkevitch

Introduction

Data and
persistence

Metaprogram-
ming
approach

future, questions
& related project

Data and persistence
garbage collection in Bismon (2/3)

Garbage collection is:

requiring boring coding conventions and calling conventions at
runtime
needing cooperation from the compiler or code generator
depending upon compiler optimizations
difficult to code, notably with multi-threading
difficult to debug and test (Heisenbugs)
wanting metaprogramming (the code of GC support routines should
be easily generated, since very regular and )

using algorithms (in copying GCs) close to persistence, since
traversing the entire heap graph.

8 / 20

https://github.com/bstarynk/bismon
http://gchandbook.org/
https://en.wikipedia.org/wiki/Heisenbug


Bismon
a static source
code analysis

framework using
some symbolic

artificial
intelligence
techniques.

B.Starynkevitch

Introduction

Data and
persistence

Metaprogram-
ming
approach

future, questions
& related project

Data and persistence
garbage collection in Bismon (3/3)

Today, in november 2019, it is :

slow, bad but easy naive, precise, mark-and-sweep GC algorithm
does not scale yet to large 50Gbytes heaps
should be generated by metaprogramming
multi-thread “friendly” , : stop the world variety (joke!)
a design bug in Bismon commit 6b26b802b8c0f4dee3053 :
Gtk recursive event loop breaking our GC invariants.
should become a copying generational GC for immutable values,
and a tri-color marking onne for mutable objects
then the write-barrier has to be implemented by changing the
metaprogram (i.e. our C code generator)
not dlclose-ing generated plugins (still science-fiction but should
be theoretically done for garbage collection of generated code).

9 / 20

https://github.com/bstarynk/bismon
https://github.com/bstarynk/bismon
https://github.com/bstarynk/bismon/commit/6b26b802b8c0f4dee3053afea9fe3ef6e3073dca
http://man7.org/linux/man-pages/man3/dlclose.3.html


Bismon
a static source
code analysis

framework using
some symbolic

artificial
intelligence
techniques.

B.Starynkevitch

Introduction

Data and
persistence

Metaprogram-
ming
approach

future, questions
& related project

Data and persistence
Objects in Bismon (1 / 2)

Every object has :

its globally unique, randomly generated, constant objid like
_8dgEp1oxLMz_5iGP2Eq1wn7 (≈ 128bits)
its pthread(7) mutex lock for synchronization
its space number
its modification time
its atomic class - itself an object
its attributes, associating key objects to non-nil values
its optional routine pointer, with ...
an optional object describing the signature of that routine.
its components, a vector of values
some optional payload which is a data owned by the object.

10 / 20

https://github.com/bstarynk/bismon
http://man7.org/linux/man-pages/man7/pthreads.7.html


Bismon
a static source
code analysis

framework using
some symbolic

artificial
intelligence
techniques.

B.Starynkevitch

Introduction

Data and
persistence

Metaprogram-
ming
approach

future, questions
& related project

Data and persistence
Objects in Bismon (2 / 2)

Of course, the class, the attributes, the components, the payload may
change, usually under protection of the mutex. The routine and
signature change thru dlsym(3).

Examples of payloads include :

mutable vector of values
mutable class information (vector of superclasses, dictionnary of
methods, ...)

mutable hashed set of objects
Web sessions or user information
dictionnaries associating strings to objects
etc ...

So Bismon objects are very versatile (similar to those of Eurisko or
Caia, more general that JavaScript objects, with ObjVLisp model ...).

11 / 20

https://github.com/bstarynk/bismon
http://man7.org/linux/man-pages/man3/dlsym.3.html
https://github.com/bstarynk/bismon


Bismon
a static source
code analysis

framework using
some symbolic

artificial
intelligence
techniques.

B.Starynkevitch

Introduction

Data and
persistence

Metaprogram-
ming
approach

future, questions
& related project

Data and persistence
Orthogonal persistence (1 / 2)

Most of the Bismon heap (but not the call stacks) is persisted in
textual files (so git friendly). For example in our store2.bmon file :

«_6dKbq51BdxU_7XmAmI0XbBR objid
± 1544448437.314 modtime
∈ _4GJJnvyrLyW_5mhopCYvh8h |=basiclo_cexpansion| class

7→ _01h86SAfOfg_1q2oMegGRwW |=comment| attribute key
"emit int v_comp" corresponding attribute value
7→ _0jFqaPPHgYH_5JpjOPxQ67p |=arguments|
* _0jFqaPPHgYH_5JpjOPxQ67p ( _41F1rKwGbaA_30OJWKsqNWy

* _5MLPTLuT4ey_0YKIUpvXybX ( _0ZL8gaI6sH8_7UPhmAQcwMe))
7→ _9OzBvYbDWm8_3XA4wkArOmo |=expander|
_6cFSE2rDxvF_99QhDhtBeS4
»_6dKbq51BdxU_7XmAmI0XbBR end objid

In november 2019, we have nearly 3370 persisted objects.

12 / 20

https://github.com/bstarynk/bismon
http://git-scm.com/


Bismon
a static source
code analysis

framework using
some symbolic

artificial
intelligence
techniques.

B.Starynkevitch

Introduction

Data and
persistence

Metaprogram-
ming
approach

future, questions
& related project

Data and persistence
Orthogonal persistence (2 / 2)

Most values are persisted. Some values are not, they are transient.
Obviously the user interface is reified as transient values.

At startup, the Bismon process loads the persisted heap. Before
exiting, the Bismon process dumps the persisted heap. Then it
usually would be git commit-ed.

Conceptually, the Bismon heap never dies : process ./bismon
would be started at morning and dumps its updated state at evening.

The persistence machinery starts the dump from a few predefined
objects in space 1, notably the_system i.e. €_4ggW2XwfXdp.... It
uses a depth-first approach with an hashed set of dumped objects,
and a fifo queue of objects to be scanned then dumped. Generated
C code is re-emitted at dump time.

13 / 20

https://github.com/bstarynk/bismon
https://github.com/bstarynk/bismon
https://github.com/bstarynk/bismon


Bismon
a static source
code analysis

framework using
some symbolic

artificial
intelligence
techniques.

B.Starynkevitch

Introduction

Data and
persistence

Metaprogram-
ming
approach

future, questions
& related project

Metaprogramming approach
Past experience: Gcc Melt ( 1 / 2 )

Gcc Melt was a Lisp-like bootstrapped domain specific language
translated (or “transpiled”) to C++ plugin code of Gcc

;;; citerator on lists
(defciterator foreach_pair_component_in_list

(lis) ;start formals
eachlist ;state
(curpair curcomp) ;local formals
:doc #{The $FOREACH_PAIR_COMPONENT_IN_LIST iterator goes within a
list, given by the start formal $LIS …}#
#{/* start foreach_pair_component_in_list $EACHLIST */
for ($CURPAIR = melt_list_first( (melt_ptr_t)$LIS);

melt_magic_discr((melt_ptr_t) $curpair) == MELTOBMAG_PAIR;
$CURPAIR = melt_pair_tail((melt_ptr_t) $CURPAIR)) {
$CURCOMP = melt_pair_head((melt_ptr_t) $CURPAIR); }#

#{ } /* end foreach_pair_component_in_list $EACHLIST */
$CURPAIR = NULL; $CURCOMP = NULL; }# )

So C or C++ code with holes or metavariables in macrostrings
14 / 20



Bismon
a static source
code analysis

framework using
some symbolic

artificial
intelligence
techniques.

B.Starynkevitch

Introduction

Data and
persistence

Metaprogram-
ming
approach

future, questions
& related project

Metaprogramming approach
Past experience: Gcc Melt ( 2 / 2 )

Typical usage was

(cond ( (is_closure f)
(foreach_pair_component_in_list
(lis)
(curpair curcomp)
(multiple_put_nth tup count (f curcomp))
(setq count (+i count 1)))
)

etc...

15 / 20



Bismon
a static source
code analysis

framework using
some symbolic

artificial
intelligence
techniques.

B.Starynkevitch

Introduction

Data and
persistence

Metaprogram-
ming
approach

future, questions
& related project

Metaprogramming approach
Metaprogramming in Bismon( 1 / 2 )

Principles:

“light” things are often (but not always!) represented by
immutable nodes (small expressions)
“heavy” things are usually objects (variables, blocks, statements,
etc...)
a hierarachy of metaprogramming classes exist.

Some constant-related metaprogram BM_makeconstis needed for
BMK_0saT3fDy8bt_1R3vTikLuIx in hand-written C code,
representing the object _0saT3fDy8bt_1R3vTikLuIx

16 / 20

https://github.com/bstarynk/bismon


Bismon
a static source
code analysis

framework using
some symbolic

artificial
intelligence
techniques.

B.Starynkevitch

Introduction

Data and
persistence

Metaprogram-
ming
approach

future, questions
& related project

Metaprogramming approach
Metaprogramming in Bismon( 2 / 2 )

The C code generator routines are partly hand-written, partly
generated.

Ours Bismon domain specific language, represented by persistent
objects (not textual representation!) has:

functions
lambda-s
object and value variadic creation primitives
machinery similar to Gcc Melt code chunks
switch on objects
conditional statements
locking statements
function application
message sending

17 / 20

https://github.com/bstarynk/bismon
https://github.com/bstarynk/bismon


Bismon
a static source
code analysis

framework using
some symbolic

artificial
intelligence
techniques.

B.Starynkevitch

Introduction

Data and
persistence

Metaprogram-
ming
approach

future, questions
& related project

future, questions & related project
future work

generate both JavaScript and Html5 (mostly done)
complete a Web interface (this could make Bismon practically
usable)
add higher level constructs
add rule machinery
improve, or even generate, the GC
generate GCC plugins (or perhaps interact with other
interpreters)

18 / 20

https://github.com/bstarynk/bismon


Bismon
a static source
code analysis

framework using
some symbolic

artificial
intelligence
techniques.

B.Starynkevitch

Introduction

Data and
persistence

Metaprogram-
ming
approach

future, questions
& related project

future, questions & related project
questions

Demo ?
Questions ? Thanks !

19 / 20



Bismon
a static source
code analysis

framework using
some symbolic

artificial
intelligence
techniques.

B.Starynkevitch

Introduction

Data and
persistence

Metaprogram-
ming
approach

future, questions
& related project

future, questions & related project
related project

refpersys.org
hobby AGI GPLv3+ Linux-only project, with enthusiastic partners -more
wanted-, embryonic, risky, preparing my retirement, unrelated to Bismon
or to static analysis

20 / 20

http://refpersys.org/
https://github.com/bstarynk/bismon

	Introduction
	Data and persistence
	Metaprogramming approach
	future, questions & related project

